2016, 9(1): 1-49. doi: 10.3934/krm.2016.9.1

Propagation of chaos for the spatially homogeneous Landau equation for Maxwellian molecules

1. 

CEREMADE, Université Paris-Dauphine, UMR CNRS 7534, F-75775 Paris, France

Received  April 2014 Revised  September 2015 Published  October 2015

We prove a quantitative propagation of chaos and entropic chaos, uniformly in time, for the spatially homogeneous Landau equation in the case of Maxwellian molecules. We improve the results of Fontbona, Guérin and Méléard [9] and Fournier [10] where the propagation of chaos is proved for finite time. Moreover, we prove a quantitative estimate on the rate of convergence to equilibrium uniformly in the number of particles.
Citation: Kleber Carrapatoso. Propagation of chaos for the spatially homogeneous Landau equation for Maxwellian molecules. Kinetic & Related Models, 2016, 9 (1) : 1-49. doi: 10.3934/krm.2016.9.1
References:
[1]

A. A. Arsen'ev and O. E. Buryak, On the connection betwenn a solution of the Boltzmann equation and a solution of the Landau-Fokker-Planck equation,, Math. USSR Sbornik, 69 (1991), 465.

[2]

A. V. Bobylev, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules,, in Mathematical physics reviews, 7 (1988), 111.

[3]

A. V. Boblylev, M. Pulvirenti and C. Saffirio, From particle systems to the Landau equation: A consistency result,, Comm. Math. Phys., 319 (2013), 683. doi: 10.1007/s00220-012-1633-6.

[4]

E. A. Carlen, M. C. Carvalho, J. Le Roux, M. Loss and C. Villani, Entropy and chaos in the Kac model,, Kinet. Relat. Models, 3 (2010), 85. doi: 10.3934/krm.2010.3.85.

[5]

K. Carrapatoso, Quantitative and qualitative Kac's chaos on the Boltzmann's sphere,, Ann. Inst. Henri Poincaré Probab. Stat., 51 (2015), 993. doi: 10.1214/14-AIHP612.

[6]

P. Degond and B. Lucquin-Desreux, The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case,, Math. Mod. Meth. in Appl. Sci., 2 (1992), 167. doi: 10.1142/S0218202592000119.

[7]

L. Desvillettes, On the asymptotics of the Boltzmann equation when the collisions become grazing,, Transp. Theory and Stat. Phys., 21 (1992), 259. doi: 10.1080/00411459208203923.

[8]

A. Einav, A counter-example to Cercignani's conjecture for the d-dimensional Kac model,, J. Statist. Phys., 148 (2012), 1076. doi: 10.1007/s10955-012-0565-z.

[9]

J. Fontbona, H. Guérin and S. Méléard, Measurability of optimal transportation and convergence rate for Landau type interacting particle systems,, Probab. Theory Related Fields, 143 (2009), 329. doi: 10.1007/s00440-007-0128-4.

[10]

N. Fournier, Particle approximation of some Landau equations,, Kinet. Relat. Models, 2 (2009), 451. doi: 10.3934/krm.2009.2.451.

[11]

I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-Range Potentials,, Zurich Lectures in Advanced Mathematics, (2013).

[12]

H. Grad, On the kinetic theory of rarefied gases,, Comm. Pure Appl. Math., 2 (1949), 331. doi: 10.1002/cpa.3160020403.

[13]

H. Guérin, Existence and regularity of a weak function-solution for some Landau equations with a stochastic approach,, Stochastic Process. Appl., 101 (2002), 303. doi: 10.1016/S0304-4149(02)00107-2.

[14]

H. Guérin, Solving Landau equation for some soft potentials through a probabilistic approach,, Ann. Appl. Probab., 13 (2003), 515. doi: 10.1214/aoap/1050689592.

[15]

M. Hauray and S. Mischler, On Kac's chaos and related problems,, J. Funct. Anal., 266 (2014), 6055. doi: 10.1016/j.jfa.2014.02.030.

[16]

R. Illner and M. Pulvirenti, Global validity of the Boltzmann equation for a two-dimensional rare gas in vacuum,, Comm. Math. Phys., 105 (1986), 189. doi: 10.1007/BF01211098.

[17]

M. Kac, Foundations of kinetic theory,, in Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, (1956), 1954.

[18]

M. Kiessling and C. Lancellotti, On the master equation approach to kinetic theory: Linear and nonlinear Fokker-Planck equations,, Transport Theory and Statistical Physics, 33 (2004), 379. doi: 10.1081/TT-200053929.

[19]

O. E. Lanford III, Time evolution of large classical systems,, in Dynamical systems, 38 (1975), 1.

[20]

H. P. McKean Jr., An exponential formula for solving Boltmann's equation for a Maxwellian gas,, J. Combinatorial Theory, 2 (1967), 358. doi: 10.1016/S0021-9800(67)80035-8.

[21]

E. Miot, M. Pulvirenti and C. Saffirio, On the Kac model for the Landau equation,, Kinet. Relat. Models, 4 (2011), 333. doi: 10.3934/krm.2011.4.333.

[22]

S. Mischler and C. Mouhot, Kac's program in kinetic theory,, Inv. Math., 193 (2013), 1. doi: 10.1007/s00222-012-0422-3.

[23]

S. Mischler, C. Mouhot and B. Wennberg, A new approach to quantitative propagation of chaos for drift, diffusion and jump processes,, Probab. Theory Related Fields, 161 (2015), 1. doi: 10.1007/s00440-013-0542-8.

[24]

D. W. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, vol. 233 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],, Springer-Verlag, (1979).

[25]

A.-S. Sznitman, Topics in propagation of chaos,, in École d'Été de Probabilités de Saint-Flour XIX-1989, (1464), 165. doi: 10.1007/BFb0085169.

[26]

H. Tanaka, Probabilistic treatment of the Boltzmann equation of Maxwellian molecules,, Z. Wahrsch. Verw. Gebiete, 46 (): 67. doi: 10.1007/BF00535689.

[27]

G. Toscani and C. Villani, Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas,, J. Statist. Phys., 94 (1999), 619. doi: 10.1023/A:1004589506756.

[28]

C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations,, Arch. Rational Mech. Anal., 143 (1998), 273. doi: 10.1007/s002050050106.

[29]

C. Villani, On the spatially homogeneous Landau equation for Maxwellian molecules,, Math. Models Methods Appl. Sci., 8 (1998), 957. doi: 10.1142/S0218202598000433.

[30]

C. Villani, Decrease of the Fisher information for solutions of the spatially homogeneous Landau equation with Maxwellian molecules,, Math. Mod. Meth. Appl. Sci., 10 (2000), 153. doi: 10.1142/S0218202500000100.

[31]

C. Villani, A review of mathematical topics in collisional kinetic theory,, in Handbook of mathematical fluid dynamics, 1 (2002), 71. doi: 10.1016/S1874-5792(02)80004-0.

[32]

C. Villani, Optimal Transport, vol. 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],, Springer-Verlag, (2009). doi: 10.1007/978-3-540-71050-9.

show all references

References:
[1]

A. A. Arsen'ev and O. E. Buryak, On the connection betwenn a solution of the Boltzmann equation and a solution of the Landau-Fokker-Planck equation,, Math. USSR Sbornik, 69 (1991), 465.

[2]

A. V. Bobylev, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules,, in Mathematical physics reviews, 7 (1988), 111.

[3]

A. V. Boblylev, M. Pulvirenti and C. Saffirio, From particle systems to the Landau equation: A consistency result,, Comm. Math. Phys., 319 (2013), 683. doi: 10.1007/s00220-012-1633-6.

[4]

E. A. Carlen, M. C. Carvalho, J. Le Roux, M. Loss and C. Villani, Entropy and chaos in the Kac model,, Kinet. Relat. Models, 3 (2010), 85. doi: 10.3934/krm.2010.3.85.

[5]

K. Carrapatoso, Quantitative and qualitative Kac's chaos on the Boltzmann's sphere,, Ann. Inst. Henri Poincaré Probab. Stat., 51 (2015), 993. doi: 10.1214/14-AIHP612.

[6]

P. Degond and B. Lucquin-Desreux, The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case,, Math. Mod. Meth. in Appl. Sci., 2 (1992), 167. doi: 10.1142/S0218202592000119.

[7]

L. Desvillettes, On the asymptotics of the Boltzmann equation when the collisions become grazing,, Transp. Theory and Stat. Phys., 21 (1992), 259. doi: 10.1080/00411459208203923.

[8]

A. Einav, A counter-example to Cercignani's conjecture for the d-dimensional Kac model,, J. Statist. Phys., 148 (2012), 1076. doi: 10.1007/s10955-012-0565-z.

[9]

J. Fontbona, H. Guérin and S. Méléard, Measurability of optimal transportation and convergence rate for Landau type interacting particle systems,, Probab. Theory Related Fields, 143 (2009), 329. doi: 10.1007/s00440-007-0128-4.

[10]

N. Fournier, Particle approximation of some Landau equations,, Kinet. Relat. Models, 2 (2009), 451. doi: 10.3934/krm.2009.2.451.

[11]

I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-Range Potentials,, Zurich Lectures in Advanced Mathematics, (2013).

[12]

H. Grad, On the kinetic theory of rarefied gases,, Comm. Pure Appl. Math., 2 (1949), 331. doi: 10.1002/cpa.3160020403.

[13]

H. Guérin, Existence and regularity of a weak function-solution for some Landau equations with a stochastic approach,, Stochastic Process. Appl., 101 (2002), 303. doi: 10.1016/S0304-4149(02)00107-2.

[14]

H. Guérin, Solving Landau equation for some soft potentials through a probabilistic approach,, Ann. Appl. Probab., 13 (2003), 515. doi: 10.1214/aoap/1050689592.

[15]

M. Hauray and S. Mischler, On Kac's chaos and related problems,, J. Funct. Anal., 266 (2014), 6055. doi: 10.1016/j.jfa.2014.02.030.

[16]

R. Illner and M. Pulvirenti, Global validity of the Boltzmann equation for a two-dimensional rare gas in vacuum,, Comm. Math. Phys., 105 (1986), 189. doi: 10.1007/BF01211098.

[17]

M. Kac, Foundations of kinetic theory,, in Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, (1956), 1954.

[18]

M. Kiessling and C. Lancellotti, On the master equation approach to kinetic theory: Linear and nonlinear Fokker-Planck equations,, Transport Theory and Statistical Physics, 33 (2004), 379. doi: 10.1081/TT-200053929.

[19]

O. E. Lanford III, Time evolution of large classical systems,, in Dynamical systems, 38 (1975), 1.

[20]

H. P. McKean Jr., An exponential formula for solving Boltmann's equation for a Maxwellian gas,, J. Combinatorial Theory, 2 (1967), 358. doi: 10.1016/S0021-9800(67)80035-8.

[21]

E. Miot, M. Pulvirenti and C. Saffirio, On the Kac model for the Landau equation,, Kinet. Relat. Models, 4 (2011), 333. doi: 10.3934/krm.2011.4.333.

[22]

S. Mischler and C. Mouhot, Kac's program in kinetic theory,, Inv. Math., 193 (2013), 1. doi: 10.1007/s00222-012-0422-3.

[23]

S. Mischler, C. Mouhot and B. Wennberg, A new approach to quantitative propagation of chaos for drift, diffusion and jump processes,, Probab. Theory Related Fields, 161 (2015), 1. doi: 10.1007/s00440-013-0542-8.

[24]

D. W. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, vol. 233 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],, Springer-Verlag, (1979).

[25]

A.-S. Sznitman, Topics in propagation of chaos,, in École d'Été de Probabilités de Saint-Flour XIX-1989, (1464), 165. doi: 10.1007/BFb0085169.

[26]

H. Tanaka, Probabilistic treatment of the Boltzmann equation of Maxwellian molecules,, Z. Wahrsch. Verw. Gebiete, 46 (): 67. doi: 10.1007/BF00535689.

[27]

G. Toscani and C. Villani, Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas,, J. Statist. Phys., 94 (1999), 619. doi: 10.1023/A:1004589506756.

[28]

C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations,, Arch. Rational Mech. Anal., 143 (1998), 273. doi: 10.1007/s002050050106.

[29]

C. Villani, On the spatially homogeneous Landau equation for Maxwellian molecules,, Math. Models Methods Appl. Sci., 8 (1998), 957. doi: 10.1142/S0218202598000433.

[30]

C. Villani, Decrease of the Fisher information for solutions of the spatially homogeneous Landau equation with Maxwellian molecules,, Math. Mod. Meth. Appl. Sci., 10 (2000), 153. doi: 10.1142/S0218202500000100.

[31]

C. Villani, A review of mathematical topics in collisional kinetic theory,, in Handbook of mathematical fluid dynamics, 1 (2002), 71. doi: 10.1016/S1874-5792(02)80004-0.

[32]

C. Villani, Optimal Transport, vol. 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],, Springer-Verlag, (2009). doi: 10.1007/978-3-540-71050-9.

[1]

J. Alberto Conejero, Francisco Rodenas, Macarena Trujillo. Chaos for the Hyperbolic Bioheat Equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 653-668. doi: 10.3934/dcds.2015.35.653

[2]

Hui Huang, Jian-Guo Liu. Well-posedness for the Keller-Segel equation with fractional Laplacian and the theory of propagation of chaos. Kinetic & Related Models, 2016, 9 (4) : 715-748. doi: 10.3934/krm.2016013

[3]

Dmitry Turaev, Sergey Zelik. Analytical proof of space-time chaos in Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1713-1751. doi: 10.3934/dcds.2010.28.1713

[4]

S. Jiménez, Pedro J. Zufiria. Characterizing chaos in a type of fractional Duffing's equation. Conference Publications, 2015, 2015 (special) : 660-669. doi: 10.3934/proc.2015.0660

[5]

Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757

[6]

Arsen R. Dzhanoev, Alexander Loskutov, Hongjun Cao, Miguel A.F. Sanjuán. A new mechanism of the chaos suppression. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 275-284. doi: 10.3934/dcdsb.2007.7.275

[7]

Eric A. Carlen, Maria C. Carvalho, Jonathan Le Roux, Michael Loss, Cédric Villani. Entropy and chaos in the Kac model. Kinetic & Related Models, 2010, 3 (1) : 85-122. doi: 10.3934/krm.2010.3.85

[8]

Vadim S. Anishchenko, Tatjana E. Vadivasova, Galina I. Strelkova, George A. Okrokvertskhov. Statistical properties of dynamical chaos. Mathematical Biosciences & Engineering, 2004, 1 (1) : 161-184. doi: 10.3934/mbe.2004.1.161

[9]

Y. Charles Li. Chaos phenotypes discovered in fluids. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1383-1398. doi: 10.3934/dcds.2010.26.1383

[10]

Kaijen Cheng, Kenneth Palmer. Chaos in a model for masting. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1917-1932. doi: 10.3934/dcdsb.2015.20.1917

[11]

Flaviano Battelli, Michal Fe?kan. Chaos in forced impact systems. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 861-890. doi: 10.3934/dcdss.2013.6.861

[12]

Kaijen Cheng, Kenneth Palmer, Yuh-Jenn Wu. Period 3 and chaos for unimodal maps. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1933-1949. doi: 10.3934/dcds.2014.34.1933

[13]

Piotr Oprocha. Specification properties and dense distributional chaos. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 821-833. doi: 10.3934/dcds.2007.17.821

[14]

Piotr Oprocha, Pawel Wilczynski. Distributional chaos via isolating segments. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 347-356. doi: 10.3934/dcdsb.2007.8.347

[15]

Jaroslav Smítal, Marta Štefánková. Omega-chaos almost everywhere. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1323-1327. doi: 10.3934/dcds.2003.9.1323

[16]

Xianwei Chen, Zhujun Jing, Xiangling Fu. Chaos control in a pendulum system with excitations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 373-383. doi: 10.3934/dcdsb.2015.20.373

[17]

Lidong Wang, Xiang Wang, Fengchun Lei, Heng Liu. Mixing invariant extremal distributional chaos. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6533-6538. doi: 10.3934/dcds.2016082

[18]

Helmut Kröger. From quantum action to quantum chaos. Conference Publications, 2003, 2003 (Special) : 492-500. doi: 10.3934/proc.2003.2003.492

[19]

Y. Charles Li. Existence of chaos in weakly quasilinear systems. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1331-1344. doi: 10.3934/cpaa.2011.10.1331

[20]

Iuliana Oprea, Gerhard Dangelmayr. A period doubling route to spatiotemporal chaos in a system of Ginzburg-Landau equations for nematic electroconvection. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 273-296. doi: 10.3934/dcdsb.2018095

2017 Impact Factor: 1.219

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]