2015, 14(6): 2377-2392. doi: 10.3934/cpaa.2015.14.2377

The Liouville theorems for elliptic equations with nonstandard growth

1. 

Institute of Mathematics of the Polish Academy of Sciences, 00-956 Warsaw, Poland

2. 

Department of Mathematics and Information Sciences, Warsaw University of Technology, Ul. Koszykowa 75, 00-662 Warsaw, Poland

Received  February 2015 Revised  June 2015 Published  September 2015

We study solutions and supersolutions of homogeneous and nonhomogeneous $A$-harmonic equations with nonstandard growth in $\mathbb{R}^n$. Various Liouville-type theorems and nonexistence results are proved. The discussion is illustrated by a number of examples.
Citation: Tomasz Adamowicz, Przemysław Górka. The Liouville theorems for elliptic equations with nonstandard growth. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2377-2392. doi: 10.3934/cpaa.2015.14.2377
References:
[1]

E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids,, Arch. Ration. Mech. Anal., 164 (2002), 213. doi: 10.1007/s00205-002-0208-7.

[2]

T. Adamowicz, Phragmén-Lindelöf theorems for equations with nonstandard growth,, Nonlinear Anal., 97 (2014), 169. doi: 10.1016/j.na.2013.11.018.

[3]

L. D'Ambrosio, Liouville theorems for anisotropic quasilinear inequalities,, Nonlinear Anal., 70 (2009), 2855. doi: 10.1016/j.na.2008.12.028.

[4]

L. D'Ambrosio and E. Mitidieri, A priori estimates and reduction principles for quasilinear elliptic problems and applications,, Adv. Differential Equations, 17 (2012), 935.

[5]

L. D'Ambrosio and E. Mitidieri, A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities,, Adv. Math., 224 (2010), 967. doi: 10.1016/j.aim.2009.12.017.

[6]

L. D'Ambrosio and E. Mitidieri, Liouville theorems for elliptic systems and applications,, J. Math. Anal. Appl., 413 (2014), 121. doi: 10.1016/j.jmaa.2013.11.052.

[7]

F. Cammaroto and L. Vilasi, On a perturbed $p(x)$-Laplacian problem in bounded and unbounded domains,, J. Math. Anal. Appl., 402 (2013), 71. doi: 10.1016/j.jmaa.2013.01.013.

[8]

G. Caristi and E. Mitidieri, Some Liouville theorems for quasilinear elliptic inequalities,, Doklady Math., 79 (2009), 118. doi: 10.1134/S1064562409010360.

[9]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration,, SIAM J. Appl. Math., 66 (2006), 1383. doi: 10.1137/050624522.

[10]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents,, Lecture Notes in Mathematics, 2017 (2011). doi: 10.1007/978-3-642-18363-8.

[11]

L. Diening and M. Růžička, Strong solutions for generalized Newtonian fluids,, J. Math. Fluid Mech., 7 (2005), 413. doi: 10.1007/s00021-004-0124-8.

[12]

T.-L. Dinu, Entire solutions of multivalued nonlinear Schrödinger equations in Sobolev spaces with variable exponent,, Nonlinear Anal., 65 (2006), 1414. doi: 10.1016/j.na.2005.10.022.

[13]

X.-L. Fan and X. Fan, A Knobloch-type result for $p(t)$-Laplacian systems,, J. Math. Anal. Appl., 282 (2003), 453. doi: 10.1016/S0022-247X(02)00376-1.

[14]

X.-L. Fan, Global $C^{1,\alpha}$ regularity for variable exponent elliptic equations in divergence form,, J. Differential Equations, 235 (2007), 397. doi: 10.1016/j.jde.2007.01.008.

[15]

R. Filippucci, Nonexistence of positive weak solutions of elliptic inequalities,, Nonlinear Anal., 70 (2009), 2903. doi: 10.1016/j.na.2008.12.018.

[16]

Y. Fu, Existence of solutions for $p(x)$-Laplacian problem on an unbounded domain,, Topol. Methods Nonlinear Anal., 30 (2007), 235.

[17]

P. Hästö, On the existence of minimizers of the variable exponent Dirichlet energy integral,, Commun. Pure Appl. Anal., 5 (2006), 413. doi: 10.3934/cpaa.2006.5.415.

[18]

P. Harjulehto, P. Hästö, Ût V. Lê and M. Nuortio, Overview of differential equations with non-standard growth,, Nonlinear Anal., 72 (2010), 4551. doi: 10.1016/j.na.2010.02.033.

[19]

P. Harjulehto, P. Hästö, M. Koskenoja, T. Lukkari and N. Marola, An obstacle problem and superharmonic functions with nonstandard growth,, Nonlinear Anal., 67 (2007), 3424. doi: 10.1016/j.na.2006.10.026.

[20]

J. Heinonen, Lectures on Analysis on Metric Spaces,, Universitext, (2001). doi: 10.1007/978-1-4613-0131-8.

[21]

J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations,, 2$^{nd}$ ed., (2006).

[22]

I. Holopainen and P. Pankka, $p$-Laplace operator, quasiregular mappings and Picard-type theorems,, Quasiconformal mappings and their applications, (2007), 117.

[23]

P. Lindqvist, On the growth of the solutions of the differential equation div$(|\nabla u|^{p -2} \nabla u ) = 0$ in $n$-dimensional space,, J. Differential Equations, 58 (1985), 307. doi: 10.1016/0022-0396(85)90002-6.

[24]

W. Liu and P. Zhao, Existence of positive solutions for $p(x)$-Laplacian equations in unbounded domains,, Nonlinear Anal., 69 (2008), 3358. doi: 10.1016/j.na.2007.09.027.

[25]

O. Martio, Quasiminimizing properties of solutions to Riccati type equations,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 12 (2013), 823.

[26]

E. Mitidieri and S. I. Pokhozaev, Some generalizations of the Bernstein Theorem,, Differential Equations, 38 (2002), 373. doi: 10.1023/A:1016066010721.

[27]

N.-C. Phuc, Quasilinear Riccati type equations with super-critical exponents,, Comm. Partial Differential Equations, 35 (2010), 1958. doi: 10.1080/03605300903585344.

[28]

P. Pucci and Q. Zhang, Existence of entire solutions for a class of variable exponent elliptic equations,, J. Differential Equations, 257 (2014), 1529. doi: 10.1016/j.jde.2014.05.023.

[29]

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory,, Lecture Notes in Mathematics, 1748 (2000). doi: 10.1007/BFb0104029.

[30]

J. Serrin, The Liouville theorem for homogeneous elliptic differential inequalities. Problems in mathematical analysis, No. 61., J. Math. Sci. (N. Y.), 179 (2011), 174. doi: 10.1007/s10958-011-0588-z.

[31]

L. F. Wang, Liouville theorem for the variable exponent Laplacian (Chinese),, J. East China Norm. Univ. Natur. Sci. Ed., 1 (2009), 84.

[32]

V. Zhikov, On some variational problems (Russian),, J. Math. Phys., 5 (1997), 105.

[33]

V. Zhikov, Density of smooth functions in Sobolev-Orlicz spaces,, J. Math. Sci. (N. Y.), 132 (2006), 285. doi: 10.1007/s10958-005-0497-0.

show all references

References:
[1]

E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids,, Arch. Ration. Mech. Anal., 164 (2002), 213. doi: 10.1007/s00205-002-0208-7.

[2]

T. Adamowicz, Phragmén-Lindelöf theorems for equations with nonstandard growth,, Nonlinear Anal., 97 (2014), 169. doi: 10.1016/j.na.2013.11.018.

[3]

L. D'Ambrosio, Liouville theorems for anisotropic quasilinear inequalities,, Nonlinear Anal., 70 (2009), 2855. doi: 10.1016/j.na.2008.12.028.

[4]

L. D'Ambrosio and E. Mitidieri, A priori estimates and reduction principles for quasilinear elliptic problems and applications,, Adv. Differential Equations, 17 (2012), 935.

[5]

L. D'Ambrosio and E. Mitidieri, A priori estimates, positivity results, and nonexistence theorems for quasilinear degenerate elliptic inequalities,, Adv. Math., 224 (2010), 967. doi: 10.1016/j.aim.2009.12.017.

[6]

L. D'Ambrosio and E. Mitidieri, Liouville theorems for elliptic systems and applications,, J. Math. Anal. Appl., 413 (2014), 121. doi: 10.1016/j.jmaa.2013.11.052.

[7]

F. Cammaroto and L. Vilasi, On a perturbed $p(x)$-Laplacian problem in bounded and unbounded domains,, J. Math. Anal. Appl., 402 (2013), 71. doi: 10.1016/j.jmaa.2013.01.013.

[8]

G. Caristi and E. Mitidieri, Some Liouville theorems for quasilinear elliptic inequalities,, Doklady Math., 79 (2009), 118. doi: 10.1134/S1064562409010360.

[9]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration,, SIAM J. Appl. Math., 66 (2006), 1383. doi: 10.1137/050624522.

[10]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents,, Lecture Notes in Mathematics, 2017 (2011). doi: 10.1007/978-3-642-18363-8.

[11]

L. Diening and M. Růžička, Strong solutions for generalized Newtonian fluids,, J. Math. Fluid Mech., 7 (2005), 413. doi: 10.1007/s00021-004-0124-8.

[12]

T.-L. Dinu, Entire solutions of multivalued nonlinear Schrödinger equations in Sobolev spaces with variable exponent,, Nonlinear Anal., 65 (2006), 1414. doi: 10.1016/j.na.2005.10.022.

[13]

X.-L. Fan and X. Fan, A Knobloch-type result for $p(t)$-Laplacian systems,, J. Math. Anal. Appl., 282 (2003), 453. doi: 10.1016/S0022-247X(02)00376-1.

[14]

X.-L. Fan, Global $C^{1,\alpha}$ regularity for variable exponent elliptic equations in divergence form,, J. Differential Equations, 235 (2007), 397. doi: 10.1016/j.jde.2007.01.008.

[15]

R. Filippucci, Nonexistence of positive weak solutions of elliptic inequalities,, Nonlinear Anal., 70 (2009), 2903. doi: 10.1016/j.na.2008.12.018.

[16]

Y. Fu, Existence of solutions for $p(x)$-Laplacian problem on an unbounded domain,, Topol. Methods Nonlinear Anal., 30 (2007), 235.

[17]

P. Hästö, On the existence of minimizers of the variable exponent Dirichlet energy integral,, Commun. Pure Appl. Anal., 5 (2006), 413. doi: 10.3934/cpaa.2006.5.415.

[18]

P. Harjulehto, P. Hästö, Ût V. Lê and M. Nuortio, Overview of differential equations with non-standard growth,, Nonlinear Anal., 72 (2010), 4551. doi: 10.1016/j.na.2010.02.033.

[19]

P. Harjulehto, P. Hästö, M. Koskenoja, T. Lukkari and N. Marola, An obstacle problem and superharmonic functions with nonstandard growth,, Nonlinear Anal., 67 (2007), 3424. doi: 10.1016/j.na.2006.10.026.

[20]

J. Heinonen, Lectures on Analysis on Metric Spaces,, Universitext, (2001). doi: 10.1007/978-1-4613-0131-8.

[21]

J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations,, 2$^{nd}$ ed., (2006).

[22]

I. Holopainen and P. Pankka, $p$-Laplace operator, quasiregular mappings and Picard-type theorems,, Quasiconformal mappings and their applications, (2007), 117.

[23]

P. Lindqvist, On the growth of the solutions of the differential equation div$(|\nabla u|^{p -2} \nabla u ) = 0$ in $n$-dimensional space,, J. Differential Equations, 58 (1985), 307. doi: 10.1016/0022-0396(85)90002-6.

[24]

W. Liu and P. Zhao, Existence of positive solutions for $p(x)$-Laplacian equations in unbounded domains,, Nonlinear Anal., 69 (2008), 3358. doi: 10.1016/j.na.2007.09.027.

[25]

O. Martio, Quasiminimizing properties of solutions to Riccati type equations,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 12 (2013), 823.

[26]

E. Mitidieri and S. I. Pokhozaev, Some generalizations of the Bernstein Theorem,, Differential Equations, 38 (2002), 373. doi: 10.1023/A:1016066010721.

[27]

N.-C. Phuc, Quasilinear Riccati type equations with super-critical exponents,, Comm. Partial Differential Equations, 35 (2010), 1958. doi: 10.1080/03605300903585344.

[28]

P. Pucci and Q. Zhang, Existence of entire solutions for a class of variable exponent elliptic equations,, J. Differential Equations, 257 (2014), 1529. doi: 10.1016/j.jde.2014.05.023.

[29]

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory,, Lecture Notes in Mathematics, 1748 (2000). doi: 10.1007/BFb0104029.

[30]

J. Serrin, The Liouville theorem for homogeneous elliptic differential inequalities. Problems in mathematical analysis, No. 61., J. Math. Sci. (N. Y.), 179 (2011), 174. doi: 10.1007/s10958-011-0588-z.

[31]

L. F. Wang, Liouville theorem for the variable exponent Laplacian (Chinese),, J. East China Norm. Univ. Natur. Sci. Ed., 1 (2009), 84.

[32]

V. Zhikov, On some variational problems (Russian),, J. Math. Phys., 5 (1997), 105.

[33]

V. Zhikov, Density of smooth functions in Sobolev-Orlicz spaces,, J. Math. Sci. (N. Y.), 132 (2006), 285. doi: 10.1007/s10958-005-0497-0.

[1]

Seppo Granlund, Niko Marola. Phragmén--Lindelöf theorem for infinity harmonic functions. Communications on Pure & Applied Analysis, 2015, 14 (1) : 127-132. doi: 10.3934/cpaa.2015.14.127

[2]

Chao Zhang, Xia Zhang, Shulin Zhou. Gradient estimates for the strong $p(x)$-Laplace equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4109-4129. doi: 10.3934/dcds.2017175

[3]

Shenzhou Zheng, Laping Zhang, Zhaosheng Feng. Everywhere regularity for P-harmonic type systems under the subcritical growth. Communications on Pure & Applied Analysis, 2008, 7 (1) : 107-117. doi: 10.3934/cpaa.2008.7.107

[4]

L. F. Cheung, C. K. Law, M. C. Leung. On a class of rotationally symmetric $p$-harmonic maps. Communications on Pure & Applied Analysis, 2017, 16 (6) : 1941-1955. doi: 10.3934/cpaa.2017095

[5]

Lizhi Zhang, Congming Li, Wenxiong Chen, Tingzhi Cheng. A Liouville theorem for $\alpha$-harmonic functions in $\mathbb{R}^n_+$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1721-1736. doi: 10.3934/dcds.2016.36.1721

[6]

Raf Cluckers, Julia Gordon, Immanuel Halupczok. Motivic functions, integrability, and applications to harmonic analysis on $p$-adic groups. Electronic Research Announcements, 2014, 21: 137-152. doi: 10.3934/era.2014.21.137

[7]

Fausto Ferrari, Qing Liu, Juan Manfredi. On the characterization of $p$-harmonic functions on the Heisenberg group by mean value properties. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2779-2793. doi: 10.3934/dcds.2014.34.2779

[8]

Chao Zhang, Lihe Wang, Shulin Zhou, Yun-Ho Kim. Global gradient estimates for $p(x)$-Laplace equation in non-smooth domains. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2559-2587. doi: 10.3934/cpaa.2014.13.2559

[9]

M. Carme Leseduarte, Ramon Quintanilla. Phragmén-Lindelöf alternative for an exact heat conduction equation with delay. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1221-1235. doi: 10.3934/cpaa.2013.12.1221

[10]

Miroslav Bulíček, Annegret Glitzky, Matthias Liero. Thermistor systems of p(x)-Laplace-type with discontinuous exponents via entropy solutions. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 697-713. doi: 10.3934/dcdss.2017035

[11]

Eun Bee Choi, Yun-Ho Kim. Existence of nontrivial solutions for equations of $p(x)$-Laplace type without Ambrosetti and Rabinowitz condition. Conference Publications, 2015, 2015 (special) : 276-286. doi: 10.3934/proc.2015.0276

[12]

Tadeusz Iwaniec, Gaven Martin, Carlo Sbordone. $L^p$-integrability & weak type $L^{2}$-estimates for the gradient of harmonic mappings of $\mathbb D$. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 145-152. doi: 10.3934/dcdsb.2009.11.145

[13]

Fabio Punzo. Phragmèn-Lindelöf principles for fully nonlinear elliptic equations with unbounded coefficients. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1439-1461. doi: 10.3934/cpaa.2010.9.1439

[14]

VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

[15]

Ángel Arroyo, Joonas Heino, Mikko Parviainen. Tug-of-war games with varying probabilities and the normalized p(x)-laplacian. Communications on Pure & Applied Analysis, 2017, 16 (3) : 915-944. doi: 10.3934/cpaa.2017044

[16]

Goro Akagi, Kei Matsuura. Well-posedness and large-time behaviors of solutions for a parabolic equation involving $p(x)$-Laplacian. Conference Publications, 2011, 2011 (Special) : 22-31. doi: 10.3934/proc.2011.2011.22

[17]

Yijing Sun. Estimates for extremal values of $-\Delta u= h(x) u^{q}+\lambda W(x) u^{p}$. Communications on Pure & Applied Analysis, 2010, 9 (3) : 751-760. doi: 10.3934/cpaa.2010.9.751

[18]

Bin Guo, Wenjie Gao. Finite-time blow-up and extinction rates of solutions to an initial Neumann problem involving the $p(x,t)-Laplace$ operator and a non-local term. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 715-730. doi: 10.3934/dcds.2016.36.715

[19]

Arrigo Cellina. The regularity of solutions to some variational problems, including the p-Laplace equation for 3≤p < 4. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4071-4085. doi: 10.3934/dcds.2018177

[20]

Susana Merchán, Luigi Montoro, I. Peral. Optimal reaction exponent for some qualitative properties of solutions to the $p$-heat equation. Communications on Pure & Applied Analysis, 2015, 14 (1) : 245-268. doi: 10.3934/cpaa.2015.14.245

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]