2015, 9: 237-255. doi: 10.3934/jmd.2015.9.237

A concise proof of the multiplicative ergodic theorem on Banach spaces

1. 

School of Mathematics and Physics, The University of Queensland, St Lucia QLD 4072, Australia

2. 

Department of Mathematics and Statistics, University of Victoria, P.O. Box 3060 STN CSC, Victoria, B.C., V8W 3R4

Received  July 2014 Revised  May 2015 Published  September 2015

We give a new proof of a multiplicative ergodic theorem for quasi-compact operators on Banach spaces with a separable dual. Our proof works by constructing the finite-codimensional `slow' subspaces (those where the growth rate is dominated by some $\lambda_i$), in contrast with earlier infinite-dimensional multiplicative ergodic theorems which work by constructing the finite-dimensional fast subspaces. As an important consequence for applications, we are able to get rid of the injectivity requirements that appear in earlier works.
Citation: Cecilia González-Tokman, Anthony Quas. A concise proof of the multiplicative ergodic theorem on Banach spaces. Journal of Modern Dynamics, 2015, 9: 237-255. doi: 10.3934/jmd.2015.9.237
References:
[1]

A. Blumenthal, A volume-based approach to the multiplicative ergodic theorem on Banach spaces,, , ().

[2]

T. S. Doan, Lyapunov Exponents for Random Dynamical Systems,, PhD thesis, (2009).

[3]

G. Froyland, S. Lloyd and A. Quas, Coherent structures and isolated spectrum for Perron-Frobenius cocycles,, Ergodic Theory Dynam. Systems, 30 (2010), 729. doi: 10.1017/S0143385709000339.

[4]

C. González-Tokman and A. Quas, A semi-invertible operator Oseledets theorem,, Ergodic Theory Dynam. Systems, 34 (2014), 1230. doi: 10.1017/etds.2012.189.

[5]

T. Kato, Perturbation theory for linear operators,, Reprint of the 1980 edition, (1980).

[6]

Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space,, Mem. Amer. Math. Soc., 206 (2010). doi: 10.1090/S0065-9266-10-00574-0.

[7]

R. Mañé, Lyapounov exponents and stable manifolds for compact transformations,, in Geometric Dynamics (Rio de Janeiro, (1981), 522. doi: 10.1007/BFb0061433.

[8]

V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov exponents of dynamical systems,, Trudy Moskov. Mat. Obšč., 19 (1968), 179.

[9]

G. Pisier, The Volume of Convex Bodies and Banach Space Geometry,, Cambridge Tracts in Mathematics, (1989). doi: 10.1017/CBO9780511662454.

[10]

M. S. Raghunathan, A proof of Oseledec's multiplicative ergodic theorem,, Israel J. Math., 32 (1979), 356. doi: 10.1007/BF02760464.

[11]

D. Ruelle, Characteristic exponents and invariant manifolds in Hilbert space,, Ann. of Math. (2), 115 (1982), 243. doi: 10.2307/1971392.

[12]

P. Thieullen, Fibrés dynamiques asymptotiquement compacts. Exposants de Lyapounov. Entropie. Dimension,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 49.

[13]

P. Wojtaszczyk, Banach Spaces for Analysts,, Cambridge Studies in Advanced Mathematics, (1991). doi: 10.1017/CBO9780511608735.

show all references

References:
[1]

A. Blumenthal, A volume-based approach to the multiplicative ergodic theorem on Banach spaces,, , ().

[2]

T. S. Doan, Lyapunov Exponents for Random Dynamical Systems,, PhD thesis, (2009).

[3]

G. Froyland, S. Lloyd and A. Quas, Coherent structures and isolated spectrum for Perron-Frobenius cocycles,, Ergodic Theory Dynam. Systems, 30 (2010), 729. doi: 10.1017/S0143385709000339.

[4]

C. González-Tokman and A. Quas, A semi-invertible operator Oseledets theorem,, Ergodic Theory Dynam. Systems, 34 (2014), 1230. doi: 10.1017/etds.2012.189.

[5]

T. Kato, Perturbation theory for linear operators,, Reprint of the 1980 edition, (1980).

[6]

Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space,, Mem. Amer. Math. Soc., 206 (2010). doi: 10.1090/S0065-9266-10-00574-0.

[7]

R. Mañé, Lyapounov exponents and stable manifolds for compact transformations,, in Geometric Dynamics (Rio de Janeiro, (1981), 522. doi: 10.1007/BFb0061433.

[8]

V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov exponents of dynamical systems,, Trudy Moskov. Mat. Obšč., 19 (1968), 179.

[9]

G. Pisier, The Volume of Convex Bodies and Banach Space Geometry,, Cambridge Tracts in Mathematics, (1989). doi: 10.1017/CBO9780511662454.

[10]

M. S. Raghunathan, A proof of Oseledec's multiplicative ergodic theorem,, Israel J. Math., 32 (1979), 356. doi: 10.1007/BF02760464.

[11]

D. Ruelle, Characteristic exponents and invariant manifolds in Hilbert space,, Ann. of Math. (2), 115 (1982), 243. doi: 10.2307/1971392.

[12]

P. Thieullen, Fibrés dynamiques asymptotiquement compacts. Exposants de Lyapounov. Entropie. Dimension,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 4 (1987), 49.

[13]

P. Wojtaszczyk, Banach Spaces for Analysts,, Cambridge Studies in Advanced Mathematics, (1991). doi: 10.1017/CBO9780511608735.

[1]

Kening Lu, Alexandra Neamţu, Björn Schmalfuss. On the Oseledets-splitting for infinite-dimensional random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1219-1242. doi: 10.3934/dcdsb.2018149

[2]

Weigu Li, Kening Lu. Takens theorem for random dynamical systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3191-3207. doi: 10.3934/dcdsb.2016093

[3]

Weigu Li, Kening Lu. A Siegel theorem for dynamical systems under random perturbations. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 635-642. doi: 10.3934/dcdsb.2008.9.635

[4]

Paolo Perfetti. A Nekhoroshev theorem for some infinite--dimensional systems. Communications on Pure & Applied Analysis, 2006, 5 (1) : 125-146. doi: 10.3934/cpaa.2006.5.125

[5]

J. C. Robinson. A topological time-delay embedding theorem for infinite-dimensional cocycle dynamical systems. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 731-741. doi: 10.3934/dcdsb.2008.9.731

[6]

N. D. Cong, T. S. Doan, S. Siegmund. A Bohl-Perron type theorem for random dynamical systems. Conference Publications, 2011, 2011 (Special) : 322-331. doi: 10.3934/proc.2011.2011.322

[7]

Alex Blumenthal. A volume-based approach to the multiplicative ergodic theorem on Banach spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2377-2403. doi: 10.3934/dcds.2016.36.2377

[8]

Luciana A. Alves, Luiz A. B. San Martin. Multiplicative ergodic theorem on flag bundles of semi-simple Lie groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1247-1273. doi: 10.3934/dcds.2013.33.1247

[9]

Gary Froyland, Simon Lloyd, Anthony Quas. A semi-invertible Oseledets Theorem with applications to transfer operator cocycles. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3835-3860. doi: 10.3934/dcds.2013.33.3835

[10]

Oliver Díaz-Espinosa, Rafael de la Llave. Renormalization and central limit theorem for critical dynamical systems with weak external noise. Journal of Modern Dynamics, 2007, 1 (3) : 477-543. doi: 10.3934/jmd.2007.1.477

[11]

María J. Garrido-Atienza, Oleksiy V. Kapustyan, José Valero. Preface to the special issue "Finite and infinite dimensional multivalued dynamical systems". Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : ⅰ-ⅳ. doi: 10.3934/dcdsb.201705i

[12]

Sergei Kuksin, Galina Perelman. Vey theorem in infinite dimensions and its application to KdV. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 1-24. doi: 10.3934/dcds.2010.27.1

[13]

James Nolen. A central limit theorem for pulled fronts in a random medium. Networks & Heterogeneous Media, 2011, 6 (2) : 167-194. doi: 10.3934/nhm.2011.6.167

[14]

Yuri Kifer. Ergodic theorems for nonconventional arrays and an extension of the Szemerédi theorem. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2687-2716. doi: 10.3934/dcds.2018113

[15]

Kathryn Lindsey, Rodrigo Treviño. Infinite type flat surface models of ergodic systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5509-5553. doi: 10.3934/dcds.2016043

[16]

Lianfa He, Hongwen Zheng, Yujun Zhu. Shadowing in random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 355-362. doi: 10.3934/dcds.2005.12.355

[17]

Philippe Marie, Jérôme Rousseau. Recurrence for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 1-16. doi: 10.3934/dcds.2011.30.1

[18]

Hans Wilhelm Alt. An abstract existence theorem for parabolic systems. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2079-2123. doi: 10.3934/cpaa.2012.11.2079

[19]

José F. Cariñena, Irina Gheorghiu, Eduardo Martínez, Patrícia Santos. On the virial theorem for nonholonomic Lagrangian systems. Conference Publications, 2015, 2015 (special) : 204-212. doi: 10.3934/proc.2015.0204

[20]

Hahng-Yun Chu, Se-Hyun Ku, Jong-Suh Park. Conley's theorem for dispersive systems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 313-321. doi: 10.3934/dcdss.2015.8.313

2017 Impact Factor: 0.425

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]