2016, 1(1): 81-91. doi: 10.3934/bdia.2016.1.81

Spatio-temporal keywords queries in HBase

1. 

Science and Technology on Information Systems Engineering Laboratory, National University of Defense Technology, Changsha 410073, China, China, China, China

Received  May 2015 Revised  August 2015 Published  September 2015

With the amount of data accumulated to tens of billions of scale, HBase, a distributed key-value database, plays a significant role in providing effective and high-throughput data service and management. However, for the applications involving spatio-temporal data, there is no good solution, due to inefficient query processing in HBase. In this paper, we propose spatio-temporal keyword searching problem for HBase, which is a meaningful issue in real life and a new challenge in this platform. To solve this problem, a novel access model for HBase is designed, containing row keys for indexing spatio-temporal dimensions and Bloom filters for fast detecting the existence of query keywords. And then, two algorithms for spatio-temporal keyword queries are developed, one is suitable for the queries with ordinary selectivity, the other is a parallel algorithm based on MapReduce aiming for the large range queries. We evaluate our algorithms on a real dataset, and the empirical results show that they are capable to handle spatio-temporal keyword queries efficiently.
Citation: Xiaoying Chen, Chong Zhang, Zonglin Shi, Weidong Xiao. Spatio-temporal keywords queries in HBase. Big Data & Information Analytics, 2016, 1 (1) : 81-91. doi: 10.3934/bdia.2016.1.81
References:
[1]

, HBase,, 2015. Available from: , ().

[2]

, Hadoop,, 2015. Available from: , ().

[3]

J. Blustein and A. El-Maazawi, Bloom filters. a tutorial, analysis, and survey,, Halifax, (2002), 1.

[4]

C. Cheng, C. Sun, X. Xu and D. Zhang, A multi-dimensional index structure based on improved VA-file and CAN in the cloud,, International Journal of Automation and Computing, 11 (2014), 109. doi: 10.1007/s11633-014-0772-y.

[5]

G. Cong, C. S. Jensen and D. Wu, Efficient retrieval of the top k most relevant spatial web objects,, VLDB Endowment, 2 (2009), 337. doi: 10.14778/1687627.1687666.

[6]

I. D. Felipe, V. Hristidis and N. Rishe, Keyword search on spatial databases,, In ICDE, (2008), 656. doi: 10.1109/ICDE.2008.4497474.

[7]

C. S. Jensen, D. Lin and B. C. Ooi, Query and update efficient B$^+$-tree based indexing of moving objects,, VLDB Endowment, 30 (2004), 768. doi: 10.1016/B978-012088469-8.50068-1.

[8]

B. Moon, H. V. Jagadish, C. Faloutsos and J. H. Saltz, Analysis of the clustering properties of the Hilbert space-filling curve,, IEEE Transactions on Knowledge and Data Engineering, 13 (2001), 124. doi: 10.1109/69.908985.

[9]

S. Nishimura, S. Das, D. Agrawal and A. E. Abbadi, MD-HBase: A Scalable Multi-dimensional Data Infrastructure for Location Aware Services,, In MDM, 1 (2011), 7. doi: 10.1109/MDM.2011.41.

[10]

W. Zhou, J. Lu, Z. Luan, S. Wang, G. Xue and S. Yao, SNB-index: A SkipNet and B+ tree based auxiliary Cloud index,, Cluster Computing, 17 (2014), 453. doi: 10.1007/s10586-013-0246-y.

show all references

References:
[1]

, HBase,, 2015. Available from: , ().

[2]

, Hadoop,, 2015. Available from: , ().

[3]

J. Blustein and A. El-Maazawi, Bloom filters. a tutorial, analysis, and survey,, Halifax, (2002), 1.

[4]

C. Cheng, C. Sun, X. Xu and D. Zhang, A multi-dimensional index structure based on improved VA-file and CAN in the cloud,, International Journal of Automation and Computing, 11 (2014), 109. doi: 10.1007/s11633-014-0772-y.

[5]

G. Cong, C. S. Jensen and D. Wu, Efficient retrieval of the top k most relevant spatial web objects,, VLDB Endowment, 2 (2009), 337. doi: 10.14778/1687627.1687666.

[6]

I. D. Felipe, V. Hristidis and N. Rishe, Keyword search on spatial databases,, In ICDE, (2008), 656. doi: 10.1109/ICDE.2008.4497474.

[7]

C. S. Jensen, D. Lin and B. C. Ooi, Query and update efficient B$^+$-tree based indexing of moving objects,, VLDB Endowment, 30 (2004), 768. doi: 10.1016/B978-012088469-8.50068-1.

[8]

B. Moon, H. V. Jagadish, C. Faloutsos and J. H. Saltz, Analysis of the clustering properties of the Hilbert space-filling curve,, IEEE Transactions on Knowledge and Data Engineering, 13 (2001), 124. doi: 10.1109/69.908985.

[9]

S. Nishimura, S. Das, D. Agrawal and A. E. Abbadi, MD-HBase: A Scalable Multi-dimensional Data Infrastructure for Location Aware Services,, In MDM, 1 (2011), 7. doi: 10.1109/MDM.2011.41.

[10]

W. Zhou, J. Lu, Z. Luan, S. Wang, G. Xue and S. Yao, SNB-index: A SkipNet and B+ tree based auxiliary Cloud index,, Cluster Computing, 17 (2014), 453. doi: 10.1007/s10586-013-0246-y.

[1]

Francesca Sapuppo, Elena Umana, Mattia Frasca, Manuela La Rosa, David Shannahoff-Khalsa, Luigi Fortuna, Maide Bucolo. Complex spatio-temporal features in meg data. Mathematical Biosciences & Engineering, 2006, 3 (4) : 697-716. doi: 10.3934/mbe.2006.3.697

[2]

Noura Azzabou, Nikos Paragios. Spatio-temporal speckle reduction in ultrasound sequences. Inverse Problems & Imaging, 2010, 4 (2) : 211-222. doi: 10.3934/ipi.2010.4.211

[3]

Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016

[4]

Pietro-Luciano Buono, Daniel C. Offin. Instability criterion for periodic solutions with spatio-temporal symmetries in Hamiltonian systems. Journal of Geometric Mechanics, 2017, 9 (4) : 439-457. doi: 10.3934/jgm.2017017

[5]

Thomas Hillen, Jeffery Zielinski, Kevin J. Painter. Merging-emerging systems can describe spatio-temporal patterning in a chemotaxis model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2513-2536. doi: 10.3934/dcdsb.2013.18.2513

[6]

Lin Wang, James Watmough, Fang Yu. Bifurcation analysis and transient spatio-temporal dynamics for a diffusive plant-herbivore system with Dirichlet boundary conditions. Mathematical Biosciences & Engineering, 2015, 12 (4) : 699-715. doi: 10.3934/mbe.2015.12.699

[7]

Jinling Zhou, Yu Yang. Traveling waves for a nonlocal dispersal SIR model with general nonlinear incidence rate and spatio-temporal delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1719-1741. doi: 10.3934/dcdsb.2017082

[8]

Zhi-Xian Yu, Rong Yuan. Traveling wave fronts in reaction-diffusion systems with spatio-temporal delay and applications. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 709-728. doi: 10.3934/dcdsb.2010.13.709

[9]

Rui Xu. Global convergence of a predator-prey model with stage structure and spatio-temporal delay. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 273-291. doi: 10.3934/dcdsb.2011.15.273

[10]

Zelik S.. Formally gradient reaction-diffusion systems in Rn have zero spatio-temporal topological. Conference Publications, 2003, 2003 (Special) : 960-966. doi: 10.3934/proc.2003.2003.960

[11]

Raimund BÜrger, Gerardo Chowell, Elvis GavilÁn, Pep Mulet, Luis M. Villada. Numerical solution of a spatio-temporal gender-structured model for hantavirus infection in rodents. Mathematical Biosciences & Engineering, 2018, 15 (1) : 95-123. doi: 10.3934/mbe.2018004

[12]

Hideo Ikeda, Masayasu Mimura, Tommaso Scotti. Shadow system approach to a plankton model generating harmful algal bloom. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 829-858. doi: 10.3934/dcds.2017034

[13]

Alexander Bibov, Heikki Haario, Antti Solonen. Stabilized BFGS approximate Kalman filter. Inverse Problems & Imaging, 2015, 9 (4) : 1003-1024. doi: 10.3934/ipi.2015.9.1003

[14]

Sebastian Reich, Seoleun Shin. On the consistency of ensemble transform filter formulations. Journal of Computational Dynamics, 2014, 1 (1) : 177-189. doi: 10.3934/jcd.2014.1.177

[15]

Russell Johnson, Carmen Núñez. The Kalman-Bucy filter revisited. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4139-4153. doi: 10.3934/dcds.2014.34.4139

[16]

Ayla Sayli, Ayse Oncu Sarihan. Statistical query-based rule derivation system by backward elimination algorithm. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1341-1356. doi: 10.3934/dcdss.2015.8.1341

[17]

Koray Karabina, Berkant Ustaoglu. Invalid-curve attacks on (hyper)elliptic curve cryptosystems. Advances in Mathematics of Communications, 2010, 4 (3) : 307-321. doi: 10.3934/amc.2010.4.307

[18]

Robert L. Devaney, Daniel M. Look. Buried Sierpinski curve Julia sets. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1035-1046. doi: 10.3934/dcds.2005.13.1035

[19]

Fritz Gesztesy, Rudi Weikard, Maxim Zinchenko. On a class of model Hilbert spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5067-5088. doi: 10.3934/dcds.2013.33.5067

[20]

Doǧan Çömez. The modulated ergodic Hilbert transform. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 325-336. doi: 10.3934/dcdss.2009.2.325

 Impact Factor: 

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

[Back to Top]