2015, 9: 191-201. doi: 10.3934/jmd.2015.9.191

Local rigidity of homogeneous actions of parabolic subgroups of rank-one Lie groups

1. 

Department of Mathematics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo, 606-8602 Kyoto, Japan

Received  October 2014 Revised  June 2015 Published  September 2015

We show the local rigidity of the standard action of the Borel subgroup of $SO_+(n,1)$ on a cocompact quotient of $SO_+(n,1)$ for $n \geq 3$.
Citation: Masayuki Asaoka. Local rigidity of homogeneous actions of parabolic subgroups of rank-one Lie groups. Journal of Modern Dynamics, 2015, 9: 191-201. doi: 10.3934/jmd.2015.9.191
References:
[1]

M. Asaoka, Nonhomogeneous locally free actions of the affine group,, Ann. of Math., 175 (2012), 1. doi: 10.4007/annals.2012.175.1.1.

[2]

D. Fisher, Local rigidity of group actions: Past, present, future,, in Dynamics, (2007), 45. doi: 10.1017/CBO9780511755187.003.

[3]

É. Ghys, Sur les actions localement libres du group affine,, Thèse de 3ème cycle, (1979).

[4]

É. Ghys, Actions localement libres du groupe affine,, Invent. Math., 82 (1985), 479. doi: 10.1007/BF01388867.

[5]

É. Ghys, Rigidité différentiable des groupes fuchsiens,, Inst. Hautes Études Sci. Publ. Math., 78 (1993), 163.

[6]

M. Hirsh, C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Mathematics, (1977).

[7]

M. Kanai, A remark on local rigidity of conformal actions on the sphere,, Math. Res. Lett., 6 (1999), 675. doi: 10.4310/MRL.1999.v6.n6.a7.

[8]

R. de la Llave, J. M. Marco and R. Moriyón, Canonical perturbation theory of Anosov systems and regularity results for the Livšic cohomology equation,, Ann. of Math. (2), 123 (1986), 537. doi: 10.2307/1971334.

[9]

R. de la Llave, Further rigidity properties of conformal Anosov systems,, Ergodic Theory Dynam. Systems, 24 (2004), 1425. doi: 10.1017/S0143385703000725.

[10]

R. S. Palais, Equivalence of nearby differentiable actions of a compact group,, Bull. Amer. Math. Soc., 67 (1961), 362. doi: 10.1090/S0002-9904-1961-10617-4.

[11]

V. Sadovskaya, On uniformly quasiconformal Anosov systems,, Math. Res. Lett., 12 (2005), 425. doi: 10.4310/MRL.2005.v12.n3.a12.

[12]

C. B. Yue, Smooth rigidity of rank-1 lattice actions on the sphere at infinity,, Math. Res. Lett., 2 (1995), 327. doi: 10.4310/MRL.1995.v2.n3.a10.

show all references

References:
[1]

M. Asaoka, Nonhomogeneous locally free actions of the affine group,, Ann. of Math., 175 (2012), 1. doi: 10.4007/annals.2012.175.1.1.

[2]

D. Fisher, Local rigidity of group actions: Past, present, future,, in Dynamics, (2007), 45. doi: 10.1017/CBO9780511755187.003.

[3]

É. Ghys, Sur les actions localement libres du group affine,, Thèse de 3ème cycle, (1979).

[4]

É. Ghys, Actions localement libres du groupe affine,, Invent. Math., 82 (1985), 479. doi: 10.1007/BF01388867.

[5]

É. Ghys, Rigidité différentiable des groupes fuchsiens,, Inst. Hautes Études Sci. Publ. Math., 78 (1993), 163.

[6]

M. Hirsh, C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Mathematics, (1977).

[7]

M. Kanai, A remark on local rigidity of conformal actions on the sphere,, Math. Res. Lett., 6 (1999), 675. doi: 10.4310/MRL.1999.v6.n6.a7.

[8]

R. de la Llave, J. M. Marco and R. Moriyón, Canonical perturbation theory of Anosov systems and regularity results for the Livšic cohomology equation,, Ann. of Math. (2), 123 (1986), 537. doi: 10.2307/1971334.

[9]

R. de la Llave, Further rigidity properties of conformal Anosov systems,, Ergodic Theory Dynam. Systems, 24 (2004), 1425. doi: 10.1017/S0143385703000725.

[10]

R. S. Palais, Equivalence of nearby differentiable actions of a compact group,, Bull. Amer. Math. Soc., 67 (1961), 362. doi: 10.1090/S0002-9904-1961-10617-4.

[11]

V. Sadovskaya, On uniformly quasiconformal Anosov systems,, Math. Res. Lett., 12 (2005), 425. doi: 10.4310/MRL.2005.v12.n3.a12.

[12]

C. B. Yue, Smooth rigidity of rank-1 lattice actions on the sphere at infinity,, Math. Res. Lett., 2 (1995), 327. doi: 10.4310/MRL.1995.v2.n3.a10.

[1]

A. Katok and R. J. Spatzier. Nonstationary normal forms and rigidity of group actions. Electronic Research Announcements, 1996, 2: 124-133.

[2]

Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Journal of Modern Dynamics, 2010, 4 (2) : 271-327. doi: 10.3934/jmd.2010.4.271

[3]

Zhenqi Jenny Wang. Local rigidity of partially hyperbolic actions. Electronic Research Announcements, 2010, 17: 68-79. doi: 10.3934/era.2010.17.68

[4]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

[5]

Dongmei Zheng, Ercai Chen, Jiahong Yang. On large deviations for amenable group actions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7191-7206. doi: 10.3934/dcds.2016113

[6]

Danijela Damjanović, James Tanis. Cocycle rigidity and splitting for some discrete parabolic actions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5211-5227. doi: 10.3934/dcds.2014.34.5211

[7]

Manfred Einsiedler and Elon Lindenstrauss. Rigidity properties of \zd-actions on tori and solenoids. Electronic Research Announcements, 2003, 9: 99-110.

[8]

Andrei Török. Rigidity of partially hyperbolic actions of property (T) groups. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 193-208. doi: 10.3934/dcds.2003.9.193

[9]

Federico Rodriguez Hertz. Global rigidity of certain Abelian actions by toral automorphisms. Journal of Modern Dynamics, 2007, 1 (3) : 425-442. doi: 10.3934/jmd.2007.1.425

[10]

Danijela Damjanovic, Anatole Katok. Local rigidity of homogeneous parabolic actions: I. A model case. Journal of Modern Dynamics, 2011, 5 (2) : 203-235. doi: 10.3934/jmd.2011.5.203

[11]

Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123-146. doi: 10.3934/jmd.2007.1.123

[12]

Danijela Damjanovic and Anatole Katok. Local rigidity of actions of higher rank abelian groups and KAM method. Electronic Research Announcements, 2004, 10: 142-154.

[13]

Luis F. López, Yannick Sire. Rigidity results for nonlocal phase transitions in the Heisenberg group $\mathbb{H}$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2639-2656. doi: 10.3934/dcds.2014.34.2639

[14]

Dariusz Skrenty. Absolutely continuous spectrum of some group extensions of Gaussian actions. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 365-378. doi: 10.3934/dcds.2010.26.365

[15]

Jean-Pierre Conze, Y. Guivarc'h. Ergodicity of group actions and spectral gap, applications to random walks and Markov shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4239-4269. doi: 10.3934/dcds.2013.33.4239

[16]

Boris Kalinin, Anatole Katok, Federico Rodriguez Hertz. Errata to "Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori" and "Uniqueness of large invariant measures for $\Zk$ actions with Cartan homotopy data". Journal of Modern Dynamics, 2010, 4 (1) : 207-209. doi: 10.3934/jmd.2010.4.207

[17]

Zhenqi Jenny Wang. New cases of differentiable rigidity for partially hyperbolic actions: Symplectic groups and resonance directions. Journal of Modern Dynamics, 2010, 4 (4) : 585-608. doi: 10.3934/jmd.2010.4.585

[18]

Anatole Katok, Federico Rodriguez Hertz. Measure and cocycle rigidity for certain nonuniformly hyperbolic actions of higher-rank abelian groups. Journal of Modern Dynamics, 2010, 4 (3) : 487-515. doi: 10.3934/jmd.2010.4.487

[19]

Danijela Damjanović, Anatole Katok. Periodic cycle functions and cocycle rigidity for certain partially hyperbolic $\mathbb R^k$ actions. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 985-1005. doi: 10.3934/dcds.2005.13.985

[20]

Anatole Katok, Federico Rodriguez Hertz. Rigidity of real-analytic actions of $SL(n,\Z)$ on $\T^n$: A case of realization of Zimmer program. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 609-615. doi: 10.3934/dcds.2010.27.609

2016 Impact Factor: 0.706

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]