2015, 9(3): 341-352. doi: 10.3934/amc.2015.9.341

Weight distributions of a class of cyclic codes from $\Bbb F_l$-conjugates

1. 

Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, China, China, China

Received  August 2014 Published  July 2015

Let $\Bbb F_{q^k}$ be a finite field and $\alpha$ a primitive element of $\Bbb F_{q^k}$, where $q=l^f$, $l$ is a prime power, and $f$ is a positive integer. Suppose that $N$ is a positive integer and $m_{g^{l^u}}(x)$ is the minimal polynomial of $g^{l^u}$ over $\Bbb F_q$ for $u=0, 1, \ldots, f-1$, where $g=\alpha^{-N}$. Let $\mathcal C$ be a cyclic code over $\Bbb F_q$ with check polynomial $$m_g(x)m_{g^l}(x) \cdots m_{g^{l^{f-1}}}(x).$$ In this paper, we shall present a method to determine the weight distribution of the cyclic code $\mathcal C$ in two cases: (1) $\gcd(\frac {q^k-1} {l-1}, N)=1$; (2) $l=2$ and $f=2$. Moreover, we will obtain a class of two-weight cyclic codes and a class of new three-weight cyclic codes.
Citation: Chengju Li, Qin Yue, Ziling Heng. Weight distributions of a class of cyclic codes from $\Bbb F_l$-conjugates. Advances in Mathematics of Communications, 2015, 9 (3) : 341-352. doi: 10.3934/amc.2015.9.341
References:
[1]

L. Baumert, W. Mills and R. Ward, Uniform cyclotomy,, J. Number Theory, 14 (1982), 67. doi: 10.1016/0022-314X(82)90058-0.

[2]

N. Boston and G. McGuire, The weight distribution of cyclic codes with two zeros and zeta functions,, J. Symb. Comput., 45 (2010), 723. doi: 10.1016/j.jsc.2010.03.007.

[3]

A. R. Calderbank and J. M. Goethals, Three-weight codes and association schemes,, Philips J. Res., 39 (1984), 143.

[4]

A. Canteaut, P. Charpin and H. Dobbertin, Weight divisibility of cyclic codes, highly nonlinear functions on $\mathbbF_{2^m}$ and crosscorrelation of maximum-length sequences,, SIAM J. Discrete Math., 13 (2000), 105. doi: 10.1137/S0895480198350057.

[5]

C. Carlet, P. Charpin and V. Zinoviev, Codes, bent functions and permutations suitable for DES-like cryptosystems,, Des. Codes Cryptogr., 15 (1998), 125. doi: 10.1023/A:1008344232130.

[6]

C. Carlet, C. Ding and J. Yuan, Linear codes from perfect nonlinear mappings and their secret sharing schemes,, IEEE Trans. Inf. Theory, 51 (2005), 2089. doi: 10.1109/TIT.2005.847722.

[7]

P. Charpin, Cyclic codes with few weights and Niho exponents,, J. Combin. Theory Ser. A, 108 (2004), 247. doi: 10.1016/j.jcta.2004.07.001.

[8]

P. Delsarte, On subfield subcodes of modified Reed-Solomon codes,, IEEE Trans. Inf. Theory, 21 (1975), 575.

[9]

C. Ding, R. Fuji-Hara, Y. Fujiwara, M. Jimbo and M. Mishima, Sets of frequency hopping sequences: bounds and optimal constructions,, IEEE Trans. Inf. Theory, 55 (2009), 3297. doi: 10.1109/TIT.2009.2021366.

[10]

C. Ding, Y. Liu, C. Ma and L. Zeng, The weight distributions of the duals of cyclic codes with two zeros,, IEEE Trans. Inf. Theory, 57 (2011), 8000. doi: 10.1109/TIT.2011.2165314.

[11]

C. Ding and J. Yang, Hamming weights in irreducible cyclic codes,, Discrete Math., 313 (2013), 434. doi: 10.1016/j.disc.2012.11.009.

[12]

C. Ding, Y. Yang and X. Tang, Optimal sets of frequency hopping sequences from linear cyclic codes,, IEEE Trans. Inf. Theory, 56 (2010), 3605. doi: 10.1109/TIT.2010.2048504.

[13]

K. Feng and J. Luo, Weight distribution of some reducible cyclic codes,, Finite Fields Appl., 14 (2008), 390. doi: 10.1016/j.ffa.2007.03.003.

[14]

T. Feng, On cyclic codes of length $2^{2^r}-1$ with two zeros whose dual codes have three weights,, Des. Codes Cryptogr., 62 (2012), 253. doi: 10.1007/s10623-011-9514-0.

[15]

T. Feng and K. Momihara, Evaluation of the weight distribution of a class of cyclic codes based on index 2 Gauss sums,, IEEE Trans. Inf. Theory, 59 (2013), 5980. doi: 10.1109/TIT.2013.2259538.

[16]

É. Fouvry and J. Klüners, On the 4-rank of class groups of quadratic number fields,, Invent. Math., 167 (2007), 455. doi: 10.1007/s00222-006-0021-2.

[17]

C. Li, N. Li, T. Helleseth and C. Ding, The weight distributions of several classes of cyclic codes from APN monomials,, IEEE Trans. Inf. Theory, 60 (2014), 4710. doi: 10.1109/TIT.2014.2329694.

[18]

C. Li and Q. Yue, Weight distribution of two classes of cyclic codes with respect to two distinct order elements,, IEEE Trans. Inf. Theory, 60 (2014), 296. doi: 10.1109/TIT.2013.2287211.

[19]

C. Li, Q. Yue and F. Li, Hamming weights of the duals of cyclic codes with two zeros,, IEEE Trans. Inf. Theory, 60 (2014), 3895. doi: 10.1109/TIT.2014.2317785.

[20]

C. Li, Q. Yue and F. Li, Weight distributions of cyclic codes with respect to pairwise coprime order elements,, Finite Fields Appl., 28 (2014), 94. doi: 10.1016/j.ffa.2014.01.009.

[21]

S. Li, S. Hu, T. Feng and G. Ge, The weight distribution of a class of cyclic codes related to Hermitian forms graphs,, IEEE Trans. Inf. Theory, 59 (2013), 3064. doi: 10.1109/TIT.2013.2242957.

[22]

R. Lidl and H. Niederreiter, Finite Fields,, Addison-Wesley Publishing Inc., (1983).

[23]

J. Luo and K. Feng, On the weight distribution of two classes of cyclic codes,, IEEE Trans. Inf. Theory, 54 (2008), 5332. doi: 10.1109/TIT.2008.2006424.

[24]

J. Luo, Y. Tang and H. Wang, Cyclic codes and sequences: the generalized Kasami case,, IEEE Trans. Inf. Theory, 56 (2010), 2130. doi: 10.1109/TIT.2010.2043783.

[25]

C. Ma, L. Zeng, Y. Liu, D. Feng and C. Ding, The weight enumerator of a class of cyclic codes,, IEEE Trans. Inf. Theory, 57 (2011), 397. doi: 10.1109/TIT.2010.2090272.

[26]

G. McGuire, On three weights in cyclic codes with two zeros,, Finite Fields Appl., 10 (2004), 97. doi: 10.1016/S1071-5797(03)00045-5.

[27]

G. Myerson, Period polynomials and Gauss sums for finite fields,, Acta Arith., 39 (1981), 251.

[28]

G. Vega, Two-weight classes cyclic codes constructed as the direct sum of two one-weight cyclic codes,, Finite Fields Appl., 14 (2008), 785. doi: 10.1016/j.ffa.2008.01.002.

[29]

G. Vega, The weight distribution of an extended class of reducible cyclic codes,, IEEE Trans. Inf. Theory, 58 (2012), 4862. doi: 10.1109/TIT.2012.2193376.

[30]

G. Vega and J. Wolfmann, New classes of 2-weight cyclic codes,, Des. Codes Cryptogr., 42 (2007), 327. doi: 10.1007/s10623-007-9038-9.

[31]

B. Wang, C. Tang, Y. Qi, Y. Yang and M. Xu, The weight distributions of cyclic codes and elliptic curves,, IEEE Trans. Inf. Theory, 58 (2012), 7253. doi: 10.1109/TIT.2012.2210386.

[32]

L. Xia and J. Yang, Cyclotomic problem, Gauss sums and Legendre curve,, Sci. China Math., 56 (2013), 1485. doi: 10.1007/s11425-013-4653-6.

[33]

M. Xiong, The weight distributions of a class of cyclic codes,, Finite Fields Appl., 18 (2012), 933. doi: 10.1016/j.ffa.2012.06.001.

[34]

M. Xiong, The weight distributions of a class of cyclic codes II,, Des. Codes Cryptogr., 72 (2014), 511. doi: 10.1007/s10623-012-9785-0.

[35]

M. Xiong, The weight distributions of a class of cyclic codes III,, Finite Fields Appl., 21 (2013), 84. doi: 10.1016/j.ffa.2013.01.004.

[36]

J. Yang, M. Xiong, C. Ding and J. Luo, Weight distribution of a class of cyclic codes with arbitrary number of zeros,, IEEE Trans. Inf. Theory, 59 (2013), 5985. doi: 10.1109/TIT.2013.2266731.

[37]

J. Yuan, C. Carlet and C. Ding, The weight distribution of a class of linear codes from perfect nonlinear functions,, IEEE Trans. Inf. Theory, 52 (2006), 712. doi: 10.1109/TIT.2005.862125.

[38]

J. Yuan and C. Ding, Secret sharing schemes from three classes of linear codes,, IEEE Trans. Inf. Theory, 52 (2006), 206. doi: 10.1109/TIT.2005.860412.

[39]

X. Zeng, L. Hu, W. Jiang, Q. Yue and X. Cao, The weight distribution of a class of p-ary cyclic codes,, Finite Fields Appl., 16 (2010), 56. doi: 10.1016/j.ffa.2009.12.001.

[40]

Z. Zhou and C. Ding, A class of three-weight cyclic codes,, Finite Fields Appl., 25 (2014), 79. doi: 10.1016/j.ffa.2013.08.005.

[41]

Z. Zhou, C. Ding, J. Luo and A. Zhang, A family of five-weight cyclic codes and their weight enumerators,, IEEE Trans. Inf. Theory, 59 (2013), 6674. doi: 10.1109/TIT.2013.2267722.

show all references

References:
[1]

L. Baumert, W. Mills and R. Ward, Uniform cyclotomy,, J. Number Theory, 14 (1982), 67. doi: 10.1016/0022-314X(82)90058-0.

[2]

N. Boston and G. McGuire, The weight distribution of cyclic codes with two zeros and zeta functions,, J. Symb. Comput., 45 (2010), 723. doi: 10.1016/j.jsc.2010.03.007.

[3]

A. R. Calderbank and J. M. Goethals, Three-weight codes and association schemes,, Philips J. Res., 39 (1984), 143.

[4]

A. Canteaut, P. Charpin and H. Dobbertin, Weight divisibility of cyclic codes, highly nonlinear functions on $\mathbbF_{2^m}$ and crosscorrelation of maximum-length sequences,, SIAM J. Discrete Math., 13 (2000), 105. doi: 10.1137/S0895480198350057.

[5]

C. Carlet, P. Charpin and V. Zinoviev, Codes, bent functions and permutations suitable for DES-like cryptosystems,, Des. Codes Cryptogr., 15 (1998), 125. doi: 10.1023/A:1008344232130.

[6]

C. Carlet, C. Ding and J. Yuan, Linear codes from perfect nonlinear mappings and their secret sharing schemes,, IEEE Trans. Inf. Theory, 51 (2005), 2089. doi: 10.1109/TIT.2005.847722.

[7]

P. Charpin, Cyclic codes with few weights and Niho exponents,, J. Combin. Theory Ser. A, 108 (2004), 247. doi: 10.1016/j.jcta.2004.07.001.

[8]

P. Delsarte, On subfield subcodes of modified Reed-Solomon codes,, IEEE Trans. Inf. Theory, 21 (1975), 575.

[9]

C. Ding, R. Fuji-Hara, Y. Fujiwara, M. Jimbo and M. Mishima, Sets of frequency hopping sequences: bounds and optimal constructions,, IEEE Trans. Inf. Theory, 55 (2009), 3297. doi: 10.1109/TIT.2009.2021366.

[10]

C. Ding, Y. Liu, C. Ma and L. Zeng, The weight distributions of the duals of cyclic codes with two zeros,, IEEE Trans. Inf. Theory, 57 (2011), 8000. doi: 10.1109/TIT.2011.2165314.

[11]

C. Ding and J. Yang, Hamming weights in irreducible cyclic codes,, Discrete Math., 313 (2013), 434. doi: 10.1016/j.disc.2012.11.009.

[12]

C. Ding, Y. Yang and X. Tang, Optimal sets of frequency hopping sequences from linear cyclic codes,, IEEE Trans. Inf. Theory, 56 (2010), 3605. doi: 10.1109/TIT.2010.2048504.

[13]

K. Feng and J. Luo, Weight distribution of some reducible cyclic codes,, Finite Fields Appl., 14 (2008), 390. doi: 10.1016/j.ffa.2007.03.003.

[14]

T. Feng, On cyclic codes of length $2^{2^r}-1$ with two zeros whose dual codes have three weights,, Des. Codes Cryptogr., 62 (2012), 253. doi: 10.1007/s10623-011-9514-0.

[15]

T. Feng and K. Momihara, Evaluation of the weight distribution of a class of cyclic codes based on index 2 Gauss sums,, IEEE Trans. Inf. Theory, 59 (2013), 5980. doi: 10.1109/TIT.2013.2259538.

[16]

É. Fouvry and J. Klüners, On the 4-rank of class groups of quadratic number fields,, Invent. Math., 167 (2007), 455. doi: 10.1007/s00222-006-0021-2.

[17]

C. Li, N. Li, T. Helleseth and C. Ding, The weight distributions of several classes of cyclic codes from APN monomials,, IEEE Trans. Inf. Theory, 60 (2014), 4710. doi: 10.1109/TIT.2014.2329694.

[18]

C. Li and Q. Yue, Weight distribution of two classes of cyclic codes with respect to two distinct order elements,, IEEE Trans. Inf. Theory, 60 (2014), 296. doi: 10.1109/TIT.2013.2287211.

[19]

C. Li, Q. Yue and F. Li, Hamming weights of the duals of cyclic codes with two zeros,, IEEE Trans. Inf. Theory, 60 (2014), 3895. doi: 10.1109/TIT.2014.2317785.

[20]

C. Li, Q. Yue and F. Li, Weight distributions of cyclic codes with respect to pairwise coprime order elements,, Finite Fields Appl., 28 (2014), 94. doi: 10.1016/j.ffa.2014.01.009.

[21]

S. Li, S. Hu, T. Feng and G. Ge, The weight distribution of a class of cyclic codes related to Hermitian forms graphs,, IEEE Trans. Inf. Theory, 59 (2013), 3064. doi: 10.1109/TIT.2013.2242957.

[22]

R. Lidl and H. Niederreiter, Finite Fields,, Addison-Wesley Publishing Inc., (1983).

[23]

J. Luo and K. Feng, On the weight distribution of two classes of cyclic codes,, IEEE Trans. Inf. Theory, 54 (2008), 5332. doi: 10.1109/TIT.2008.2006424.

[24]

J. Luo, Y. Tang and H. Wang, Cyclic codes and sequences: the generalized Kasami case,, IEEE Trans. Inf. Theory, 56 (2010), 2130. doi: 10.1109/TIT.2010.2043783.

[25]

C. Ma, L. Zeng, Y. Liu, D. Feng and C. Ding, The weight enumerator of a class of cyclic codes,, IEEE Trans. Inf. Theory, 57 (2011), 397. doi: 10.1109/TIT.2010.2090272.

[26]

G. McGuire, On three weights in cyclic codes with two zeros,, Finite Fields Appl., 10 (2004), 97. doi: 10.1016/S1071-5797(03)00045-5.

[27]

G. Myerson, Period polynomials and Gauss sums for finite fields,, Acta Arith., 39 (1981), 251.

[28]

G. Vega, Two-weight classes cyclic codes constructed as the direct sum of two one-weight cyclic codes,, Finite Fields Appl., 14 (2008), 785. doi: 10.1016/j.ffa.2008.01.002.

[29]

G. Vega, The weight distribution of an extended class of reducible cyclic codes,, IEEE Trans. Inf. Theory, 58 (2012), 4862. doi: 10.1109/TIT.2012.2193376.

[30]

G. Vega and J. Wolfmann, New classes of 2-weight cyclic codes,, Des. Codes Cryptogr., 42 (2007), 327. doi: 10.1007/s10623-007-9038-9.

[31]

B. Wang, C. Tang, Y. Qi, Y. Yang and M. Xu, The weight distributions of cyclic codes and elliptic curves,, IEEE Trans. Inf. Theory, 58 (2012), 7253. doi: 10.1109/TIT.2012.2210386.

[32]

L. Xia and J. Yang, Cyclotomic problem, Gauss sums and Legendre curve,, Sci. China Math., 56 (2013), 1485. doi: 10.1007/s11425-013-4653-6.

[33]

M. Xiong, The weight distributions of a class of cyclic codes,, Finite Fields Appl., 18 (2012), 933. doi: 10.1016/j.ffa.2012.06.001.

[34]

M. Xiong, The weight distributions of a class of cyclic codes II,, Des. Codes Cryptogr., 72 (2014), 511. doi: 10.1007/s10623-012-9785-0.

[35]

M. Xiong, The weight distributions of a class of cyclic codes III,, Finite Fields Appl., 21 (2013), 84. doi: 10.1016/j.ffa.2013.01.004.

[36]

J. Yang, M. Xiong, C. Ding and J. Luo, Weight distribution of a class of cyclic codes with arbitrary number of zeros,, IEEE Trans. Inf. Theory, 59 (2013), 5985. doi: 10.1109/TIT.2013.2266731.

[37]

J. Yuan, C. Carlet and C. Ding, The weight distribution of a class of linear codes from perfect nonlinear functions,, IEEE Trans. Inf. Theory, 52 (2006), 712. doi: 10.1109/TIT.2005.862125.

[38]

J. Yuan and C. Ding, Secret sharing schemes from three classes of linear codes,, IEEE Trans. Inf. Theory, 52 (2006), 206. doi: 10.1109/TIT.2005.860412.

[39]

X. Zeng, L. Hu, W. Jiang, Q. Yue and X. Cao, The weight distribution of a class of p-ary cyclic codes,, Finite Fields Appl., 16 (2010), 56. doi: 10.1016/j.ffa.2009.12.001.

[40]

Z. Zhou and C. Ding, A class of three-weight cyclic codes,, Finite Fields Appl., 25 (2014), 79. doi: 10.1016/j.ffa.2013.08.005.

[41]

Z. Zhou, C. Ding, J. Luo and A. Zhang, A family of five-weight cyclic codes and their weight enumerators,, IEEE Trans. Inf. Theory, 59 (2013), 6674. doi: 10.1109/TIT.2013.2267722.

[1]

Alexander Barg, Arya Mazumdar, Gilles Zémor. Weight distribution and decoding of codes on hypergraphs. Advances in Mathematics of Communications, 2008, 2 (4) : 433-450. doi: 10.3934/amc.2008.2.433

[2]

Long Yu, Hongwei Liu. A class of $p$-ary cyclic codes and their weight enumerators. Advances in Mathematics of Communications, 2016, 10 (2) : 437-457. doi: 10.3934/amc.2016017

[3]

Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395

[4]

Nigel Boston, Jing Hao. The weight distribution of quasi-quadratic residue codes. Advances in Mathematics of Communications, 2018, 12 (2) : 363-385. doi: 10.3934/amc.2018023

[5]

Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409

[6]

Pankaj Kumar, Monika Sangwan, Suresh Kumar Arora. The weight distributions of some irreducible cyclic codes of length $p^n$ and $2p^n$. Advances in Mathematics of Communications, 2015, 9 (3) : 277-289. doi: 10.3934/amc.2015.9.277

[7]

Katayun Barmak, Eva Eggeling, Maria Emelianenko, Yekaterina Epshteyn, David Kinderlehrer, Richard Sharp, Shlomo Ta'asan. An entropy based theory of the grain boundary character distribution. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 427-454. doi: 10.3934/dcds.2011.30.427

[8]

Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039

[9]

Petr Lisoněk, Layla Trummer. Algorithms for the minimum weight of linear codes. Advances in Mathematics of Communications, 2016, 10 (1) : 195-207. doi: 10.3934/amc.2016.10.195

[10]

Heide Gluesing-Luerssen, Katherine Morrison, Carolyn Troha. Cyclic orbit codes and stabilizer subfields. Advances in Mathematics of Communications, 2015, 9 (2) : 177-197. doi: 10.3934/amc.2015.9.177

[11]

Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004

[12]

Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353-357. doi: 10.3934/amc.2017028

[13]

Zihui Liu, Xiangyong Zeng. The geometric structure of relative one-weight codes. Advances in Mathematics of Communications, 2016, 10 (2) : 367-377. doi: 10.3934/amc.2016011

[14]

Christine A. Kelley, Deepak Sridhara. Eigenvalue bounds on the pseudocodeword weight of expander codes. Advances in Mathematics of Communications, 2007, 1 (3) : 287-306. doi: 10.3934/amc.2007.1.287

[15]

Heide Gluesing-Luerssen, Uwe Helmke, José Ignacio Iglesias Curto. Algebraic decoding for doubly cyclic convolutional codes. Advances in Mathematics of Communications, 2010, 4 (1) : 83-99. doi: 10.3934/amc.2010.4.83

[16]

Heide Gluesing-Luerssen, Fai-Lung Tsang. A matrix ring description for cyclic convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 55-81. doi: 10.3934/amc.2008.2.55

[17]

Umberto Martínez-Peñas. Rank equivalent and rank degenerate skew cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 267-282. doi: 10.3934/amc.2017018

[18]

Rafael Arce-Nazario, Francis N. Castro, Jose Ortiz-Ubarri. On the covering radius of some binary cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 329-338. doi: 10.3934/amc.2017025

[19]

Martianus Frederic Ezerman, San Ling, Patrick Solé, Olfa Yemen. From skew-cyclic codes to asymmetric quantum codes. Advances in Mathematics of Communications, 2011, 5 (1) : 41-57. doi: 10.3934/amc.2011.5.41

[20]

Yunwen Liu, Longjiang Qu, Chao Li. New constructions of systematic authentication codes from three classes of cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 1-16. doi: 10.3934/amc.2018001

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]