2015, 9(3): 255-275. doi: 10.3934/amc.2015.9.255

High-rate space-time block codes from twisted Laurent series rings

1. 

Department of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Ave., Tehran 15914, Iran, Iran

Received  December 2011 Revised  February 2015 Published  July 2015

We construct full-diversity, arbitrary rate STBCs for specific number of transmit antennas over an apriori specified signal set using twisted Laurent series rings. Constructing full-diversity space-time block codes from algebraic constructions like division algebras has been done by Shashidhar et al. Constructing STBCs from crossed product algebras arises this question in mind that besides these constructions, which one of the well-known division algebras are appropriate for constructing space-time block codes. This paper deals with twisted Laurent series rings and their subrings twisted function fields, to construct STBCs. First, we introduce twisted Laurent series rings over field extensions of $\mathbb{Q}$. Then, we generalize this construction to the case that coefficients come from a division algebra. Finally, we use an algorithm to construct twisted function fields, which are noncrossed product division algebras, and we propose a method for constructing STBC from them.
Citation: Hassan Khodaiemehr, Dariush Kiani. High-rate space-time block codes from twisted Laurent series rings. Advances in Mathematics of Communications, 2015, 9 (3) : 255-275. doi: 10.3934/amc.2015.9.255
References:
[1]

P. M. Cohn, Introduction to Ring Theory,, Springer-Verlag, (2000). doi: 10.1007/978-1-4471-0475-9.

[2]

M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner and K. Wildanger, KANT V4,, J. Symbolic Comp., 24 (1997), 267. doi: 10.1006/jsco.1996.0126.

[3]

M. O. Damen, K. Abed-Merriam and J. C. Belfiore, Generalized sphere decoder for asymmetrical space-time communication architecture,, IEEE Electron. Lett., 36 (2000), 16.

[4]

M. O. Damen, A. Chkeif and J. C. Belfiore, Lattice code decoder for space-time codes,, IEEE Commun. Lett., 4 (2000), 161.

[5]

M. O. Damen, A. Tewfik and J. C. Belfiore, A construction of a space-time code based on number theory,, IEEE Trans. Inf. Theory, 48 (2002), 753. doi: 10.1109/18.986032.

[6]

P. K. Draxl, Skew Fields,, Cambridge Univ. Press, (1983). doi: 10.1017/CBO9780511661907.

[7]

U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a lattice, including a complexity analysis,, Math. Comput., 44 (1985), 463. doi: 10.2307/2007966.

[8]

G. J. Foschini, Layered space-time architecture for wireless communications in a fading environment when using multi-element antennas,, Bell Labs. Tech. J., 1 (1996), 41.

[9]

G. J. Foschini and M. Gans, On the limits of wireless communication in a fading environment when using multiple antennas,, Wireless Personal Commun., 6 (1998), 311.

[10]

J. C. Guey, M. P. Fitz, M. R. Bell and W. Y. Kuo, Signal design for transmitter diversity wireless communication systems over Rayleigh fading channels,, IEEE Trans. Commun., 47 (1999), 527.

[11]

T. Hanke, An explicit example of a noncrossed product division algebra,, Math. Nachr., 271 (2004), 51. doi: 10.1002/mana.200310181.

[12]

T. Hanke, A twisted Laurent series ring that is a noncrossed product,, Israel J. Math., 150 (2005), 199. doi: 10.1007/BF02762379.

[13]

B. Hassibi and B. Hochwald, High-rate codes that are linear in space and time,, IEEE Trans. Inf. Theory, 48 (2002), 1804. doi: 10.1109/TIT.2002.1013127.

[14]

B. Hassibi and H. Vikalo, On the expected complexity of sphere decoding,, in 35th Asilomar Conf. Sign. Syst. Comp., (2001), 1051.

[15]

I. N. Herstein, Non-Commutative Rings,, Math. Assoc. Amer., (1968).

[16]

B. M. Hochwald and S. T. Brink, Achieving near-capacity on a multiple-antenna channel,, IEEE Trans. Commun., 51 (2003), 389.

[17]

T. W. Hungerford, Algebra,, 3 edition, (1980).

[18]

N. Jacobson, Basic Algebra I,, 2nd edition, (1985).

[19]

T. Y. Lam, A First Course in Noncommutative Rings,, Springer-Verlag, (1991). doi: 10.1007/978-1-4684-0406-7.

[20]

P. J. McCarthy, Algebraic Extensions of Filelds,, Dover Publications Inc., ().

[21]

J. Neukirch, Algebraische Zahlentheorie,, Springer-Verlag, (1992).

[22]

R. S. Pierce, Associative Algebras,, Springer-Verlag, (1982).

[23]

B. A. Sethuraman and B. S. Rajan, An algebraic description of orthogonal designs and the uniqueness of the Alamouti code,, in Proc. IEEE GLOBECOM (2002), (2002), 1088.

[24]

B. A. Sethuraman and B. S. Rajan, Optimal STBC over PSK signal sets from cyclotomic field extensions,, in Proc. IEEE Int. Conf. Commun. (ICC 2002), (2002), 1783.

[25]

B. A. Sethuraman and B. S. Rajan, STBC from field extensions of the rational field,, in Proc. IEEE Int. Symp. Inf. Theory (ISIT 2002), (2002).

[26]

B. A. Sethuraman, B. S. Rajan and V. Shashidhar, Full-diversity, high-rate space-time block codes from division algebras,, IEEE Trans. Inf. Theory, 49 (2003), 2596. doi: 10.1109/TIT.2003.817831.

[27]

V. Shashidhar, High-Rate and Information-Lossless Space-Time Block Codes from Crossed-Product Algebras,, Ph.D thesis, (2004).

[28]

V. Shashidhar, B. S. Rajan and B. A. Sethuraman, STBCs using capacity achieving designs from cyclic division Algebras,, in Proc. IEEE GLOBECOM (2003), (2003), 1957.

[29]

V. Shashidhar, B. S. Rajan and B. A. Sethuraman, Information lossless STBCs from crossed-product algebras,, IEEE Trans. Inf. Theory, 52 (2006), 3913. doi: 10.1109/TIT.2006.880049.

[30]

V. Shashidhar, K. Subrahmanyam, R. Chandrasekharan, B. S. Rajan and B. A. Sethuraman, High-rate, full-diversity STBCs from field extensions,, in Proc. IEEE Int. Symp. Inf. Theory (ISIT 2003), (2003).

[31]

V. Tarokh, N. Seshadri and A. R. Calderbank, Space-time codes for high data rate wireless communication: Performance criterion and code construction,, IEEE Trans. Inf. Theory, 44 (1998), 744. doi: 10.1109/18.661517.

[32]

E. Telatar, Capacity of multi-antenna Gaussian channels,, Europ. Trans. Telecommun., 10 (1999), 585.

[33]

J. P. Tignol, Generalized crossed products,, in Séminaire Mathématique (nouvelle série), (1987).

[34]

E. Viterbo and J. Boutros, A universal lattice code decoder for fading channel,, IEEE Trans. Inf. Theory, 45 (1999), 1639. doi: 10.1109/18.771234.

show all references

References:
[1]

P. M. Cohn, Introduction to Ring Theory,, Springer-Verlag, (2000). doi: 10.1007/978-1-4471-0475-9.

[2]

M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner and K. Wildanger, KANT V4,, J. Symbolic Comp., 24 (1997), 267. doi: 10.1006/jsco.1996.0126.

[3]

M. O. Damen, K. Abed-Merriam and J. C. Belfiore, Generalized sphere decoder for asymmetrical space-time communication architecture,, IEEE Electron. Lett., 36 (2000), 16.

[4]

M. O. Damen, A. Chkeif and J. C. Belfiore, Lattice code decoder for space-time codes,, IEEE Commun. Lett., 4 (2000), 161.

[5]

M. O. Damen, A. Tewfik and J. C. Belfiore, A construction of a space-time code based on number theory,, IEEE Trans. Inf. Theory, 48 (2002), 753. doi: 10.1109/18.986032.

[6]

P. K. Draxl, Skew Fields,, Cambridge Univ. Press, (1983). doi: 10.1017/CBO9780511661907.

[7]

U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a lattice, including a complexity analysis,, Math. Comput., 44 (1985), 463. doi: 10.2307/2007966.

[8]

G. J. Foschini, Layered space-time architecture for wireless communications in a fading environment when using multi-element antennas,, Bell Labs. Tech. J., 1 (1996), 41.

[9]

G. J. Foschini and M. Gans, On the limits of wireless communication in a fading environment when using multiple antennas,, Wireless Personal Commun., 6 (1998), 311.

[10]

J. C. Guey, M. P. Fitz, M. R. Bell and W. Y. Kuo, Signal design for transmitter diversity wireless communication systems over Rayleigh fading channels,, IEEE Trans. Commun., 47 (1999), 527.

[11]

T. Hanke, An explicit example of a noncrossed product division algebra,, Math. Nachr., 271 (2004), 51. doi: 10.1002/mana.200310181.

[12]

T. Hanke, A twisted Laurent series ring that is a noncrossed product,, Israel J. Math., 150 (2005), 199. doi: 10.1007/BF02762379.

[13]

B. Hassibi and B. Hochwald, High-rate codes that are linear in space and time,, IEEE Trans. Inf. Theory, 48 (2002), 1804. doi: 10.1109/TIT.2002.1013127.

[14]

B. Hassibi and H. Vikalo, On the expected complexity of sphere decoding,, in 35th Asilomar Conf. Sign. Syst. Comp., (2001), 1051.

[15]

I. N. Herstein, Non-Commutative Rings,, Math. Assoc. Amer., (1968).

[16]

B. M. Hochwald and S. T. Brink, Achieving near-capacity on a multiple-antenna channel,, IEEE Trans. Commun., 51 (2003), 389.

[17]

T. W. Hungerford, Algebra,, 3 edition, (1980).

[18]

N. Jacobson, Basic Algebra I,, 2nd edition, (1985).

[19]

T. Y. Lam, A First Course in Noncommutative Rings,, Springer-Verlag, (1991). doi: 10.1007/978-1-4684-0406-7.

[20]

P. J. McCarthy, Algebraic Extensions of Filelds,, Dover Publications Inc., ().

[21]

J. Neukirch, Algebraische Zahlentheorie,, Springer-Verlag, (1992).

[22]

R. S. Pierce, Associative Algebras,, Springer-Verlag, (1982).

[23]

B. A. Sethuraman and B. S. Rajan, An algebraic description of orthogonal designs and the uniqueness of the Alamouti code,, in Proc. IEEE GLOBECOM (2002), (2002), 1088.

[24]

B. A. Sethuraman and B. S. Rajan, Optimal STBC over PSK signal sets from cyclotomic field extensions,, in Proc. IEEE Int. Conf. Commun. (ICC 2002), (2002), 1783.

[25]

B. A. Sethuraman and B. S. Rajan, STBC from field extensions of the rational field,, in Proc. IEEE Int. Symp. Inf. Theory (ISIT 2002), (2002).

[26]

B. A. Sethuraman, B. S. Rajan and V. Shashidhar, Full-diversity, high-rate space-time block codes from division algebras,, IEEE Trans. Inf. Theory, 49 (2003), 2596. doi: 10.1109/TIT.2003.817831.

[27]

V. Shashidhar, High-Rate and Information-Lossless Space-Time Block Codes from Crossed-Product Algebras,, Ph.D thesis, (2004).

[28]

V. Shashidhar, B. S. Rajan and B. A. Sethuraman, STBCs using capacity achieving designs from cyclic division Algebras,, in Proc. IEEE GLOBECOM (2003), (2003), 1957.

[29]

V. Shashidhar, B. S. Rajan and B. A. Sethuraman, Information lossless STBCs from crossed-product algebras,, IEEE Trans. Inf. Theory, 52 (2006), 3913. doi: 10.1109/TIT.2006.880049.

[30]

V. Shashidhar, K. Subrahmanyam, R. Chandrasekharan, B. S. Rajan and B. A. Sethuraman, High-rate, full-diversity STBCs from field extensions,, in Proc. IEEE Int. Symp. Inf. Theory (ISIT 2003), (2003).

[31]

V. Tarokh, N. Seshadri and A. R. Calderbank, Space-time codes for high data rate wireless communication: Performance criterion and code construction,, IEEE Trans. Inf. Theory, 44 (1998), 744. doi: 10.1109/18.661517.

[32]

E. Telatar, Capacity of multi-antenna Gaussian channels,, Europ. Trans. Telecommun., 10 (1999), 585.

[33]

J. P. Tignol, Generalized crossed products,, in Séminaire Mathématique (nouvelle série), (1987).

[34]

E. Viterbo and J. Boutros, A universal lattice code decoder for fading channel,, IEEE Trans. Inf. Theory, 45 (1999), 1639. doi: 10.1109/18.771234.

[1]

Susanne Pumplün, Thomas Unger. Space-time block codes from nonassociative division algebras. Advances in Mathematics of Communications, 2011, 5 (3) : 449-471. doi: 10.3934/amc.2011.5.449

[2]

Susanne Pumplün, Andrew Steele. The nonassociative algebras used to build fast-decodable space-time block codes. Advances in Mathematics of Communications, 2015, 9 (4) : 449-469. doi: 10.3934/amc.2015.9.449

[3]

Susanne Pumplün. How to obtain division algebras used for fast-decodable space-time block codes. Advances in Mathematics of Communications, 2014, 8 (3) : 323-342. doi: 10.3934/amc.2014.8.323

[4]

Frédérique Oggier, B. A. Sethuraman. Quotients of orders in cyclic algebras and space-time codes. Advances in Mathematics of Communications, 2013, 7 (4) : 441-461. doi: 10.3934/amc.2013.7.441

[5]

Grégory Berhuy. Algebraic space-time codes based on division algebras with a unitary involution. Advances in Mathematics of Communications, 2014, 8 (2) : 167-189. doi: 10.3934/amc.2014.8.167

[6]

H. M. Hastings, S. Silberger, M. T. Weiss, Y. Wu. A twisted tensor product on symbolic dynamical systems and the Ashley's problem. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 549-558. doi: 10.3934/dcds.2003.9.549

[7]

Kamil Otal, Ferruh Özbudak, Wofgang Willems. Self-duality of generalized twisted Gabidulin codes. Advances in Mathematics of Communications, 2018, 12 (4) : 707-721. doi: 10.3934/amc.2018042

[8]

David Grant, Mahesh K. Varanasi. Duality theory for space-time codes over finite fields. Advances in Mathematics of Communications, 2008, 2 (1) : 35-54. doi: 10.3934/amc.2008.2.35

[9]

Fang Chen, Ning Gao, Yao- Lin Jiang. On product-type generalized block AOR method for augmented linear systems. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 797-809. doi: 10.3934/naco.2012.2.797

[10]

Chuang Peng. Minimum degrees of polynomial models on time series. Conference Publications, 2005, 2005 (Special) : 720-729. doi: 10.3934/proc.2005.2005.720

[11]

Ruiqi Li, Yifan Chen, Xiang Zhao, Yanli Hu, Weidong Xiao. Time series based urban air quality predication. Big Data & Information Analytics, 2016, 1 (2&3) : 171-183. doi: 10.3934/bdia.2016003

[12]

Nicola Sansonetto, Daniele Sepe. Twisted isotropic realisations of twisted Poisson structures. Journal of Geometric Mechanics, 2013, 5 (2) : 233-256. doi: 10.3934/jgm.2013.5.233

[13]

Sara D. Cardell, Joan-Josep Climent. An approach to the performance of SPC product codes on the erasure channel. Advances in Mathematics of Communications, 2016, 10 (1) : 11-28. doi: 10.3934/amc.2016.10.11

[14]

Valentina Casarino, Paolo Ciatti, Silvia Secco. Product structures and fractional integration along curves in the space. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 619-635. doi: 10.3934/dcdss.2013.6.619

[15]

Nuh Aydin, Nicholas Connolly, Markus Grassl. Some results on the structure of constacyclic codes and new linear codes over GF(7) from quasi-twisted codes. Advances in Mathematics of Communications, 2017, 11 (1) : 245-258. doi: 10.3934/amc.2017016

[16]

David Grant, Mahesh K. Varanasi. The equivalence of space-time codes and codes defined over finite fields and Galois rings. Advances in Mathematics of Communications, 2008, 2 (2) : 131-145. doi: 10.3934/amc.2008.2.131

[17]

A. Kononenko. Twisted cocycles and rigidity problems. Electronic Research Announcements, 1995, 1: 26-34.

[18]

Fernando Hernando, Diego Ruano. New linear codes from matrix-product codes with polynomial units. Advances in Mathematics of Communications, 2010, 4 (3) : 363-367. doi: 10.3934/amc.2010.4.363

[19]

Ekkasit Sangwisut, Somphong Jitman, Patanee Udomkavanich. Constacyclic and quasi-twisted Hermitian self-dual codes over finite fields. Advances in Mathematics of Communications, 2017, 11 (3) : 595-613. doi: 10.3934/amc.2017045

[20]

A. A. Kirillov. Family algebras. Electronic Research Announcements, 2000, 6: 7-20.

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]