`a`
Mathematical Control and Related Fields (MCRF)
 

Generalized homogeneous systems with applications to nonlinear control: A survey

Pages: 585 - 611, Volume 5, Issue 3, September 2015      doi:10.3934/mcrf.2015.5.585

 
       Abstract        References        Full Text (662.1K)       Related Articles       

Chunjiang Qian - Department of Electrical and Computer Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, United States (email)
Wei Lin - Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106, United States (email)
Wenting Zha - School of Automation, Southeast University, Nanjing, Jiangsu 210096, China (email)

Abstract: This survey provides a unified homogeneous perspective on recent advances in the global stabilization of various nonlinear systems with uncertainty. We first review definitions and properties of homogeneous systems and illustrate how the homogeneous system theory can yield elegant feedback stabilizers for certain homogeneous systems. By taking advantage of homogeneity, we then present the so-called Adding a Power Integrator (AAPI) technique and discuss how it can be employed to recursively construct smooth state feedback stabilizers for uncertain nonlinear systems with uncontrollable linearizations. Based on the AAPI technique, a non-smooth version as well as a generalized version of AAPI approaches can be further developed from a homogeneous viewpoint, resulting in solutions to the global stabilization of genuinely nonlinear systems that may not be controlled, even locally, by any smooth state feedback. In the case of output feedback control, we demonstrate in this survey why the homogeneity is the key in developing a homogeneous domination approach, which has been successful in solving some difficult nonlinear control problems including, for instance, the global stabilization of systems with higher-order nonlinearities via output feedback. Finally, we show how the notion of Homogeneity with Monotone Degrees (HWMD) plays a decisive role in unifying smooth and non-smooth AAPI methods under one framework. Other applications of HWMD will be also summarized and discussed in this paper, along the directions of constructing smooth stabilizers for nonlinear systems in special forms and ``low-gain'' controllers for a class of general upper-triangular systems.

Keywords:  Homogeneous system theory, adding a power integrator, nonlinear systems, homogeneous domination approach, global stabilization.
Mathematics Subject Classification:  Primary: 93D15, 93C10; Secondary: 00A69.

Received: November 2014;      Revised: May 2015;      Available Online: July 2015.

 References