2015, 8(3): 443-465. doi: 10.3934/krm.2015.8.443

On the weak coupling limit of quantum many-body dynamics and the quantum Boltzmann equation

1. 

Department of Mathematics, University of Rochester, Rochester, NY 14627, United States

2. 

Division of Applied Mathematics, Brown University, Providence, RI 02912

Received  December 2014 Revised  February 2015 Published  June 2015

The rigorous derivation of the Uehling-Uhlenbeck equation from more fundamental quantum many-particle systems is a challenging open problem in mathematics. In this paper, we exam the weak coupling limit of quantum $N$ -particle dynamics. We assume the integral of the microscopic interaction is zero and we assume $W^{4,1}$ per-particle regularity on the coressponding BBGKY sequence so that we can rigorously commute limits and integrals. We prove that, if the BBGKY sequence does converge in some weak sense, then this weak-coupling limit must satisfy the infinite quantum Maxwell-Boltzmann hierarchy instead of the expected infinite Uehling-Uhlenbeck hierarchy, regardless of the statistics the particles obey. Our result indicates that, in order to derive the Uehling-Uhlenbeck equation, one must work with per-particle regularity bound below $W^{4,1}$.
Citation: Xuwen Chen, Yan Guo. On the weak coupling limit of quantum many-body dynamics and the quantum Boltzmann equation. Kinetic & Related Models, 2015, 8 (3) : 443-465. doi: 10.3934/krm.2015.8.443
References:
[1]

D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, Some considerations on the derivation of the nonlinear quantum boltzmann equation,, J. Stat. Phys., 116 (2004), 381. doi: 10.1023/B:JOSS.0000037205.09518.3f.

[2]

D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, On the weak-coupling limit for bosons and fermions,, Math. Mod. Meth. Appl. Sci., 15 (2005), 1811. doi: 10.1142/S0218202505000984.

[3]

D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, From the N-body Schroedinger equation to the quantum Boltzmann equation: A term-by-term convergence result in the weak coupling regime,, Commun. Math. Phys., 277 (2008), 1. doi: 10.1007/s00220-007-0347-7.

[4]

L. Erdös, M. Salmhofer and H. T. Yau, On the quantum Boltzmann equation,, J. Stat. Phys., 116 (2004), 367. doi: 10.1023/B:JOSS.0000037224.56191.ed.

[5]

I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-range Potentials,, Zürich Lectures in Advanced Mathematics, (2013).

[6]

F. King, BBGKY Hierarchy for Positive Potentials,, Ph.D thesis, (1975).

[7]

O. E. Lanford III, Time Evolution of Large Classical Systems,, Lecture Notes in Physics, 38 (1975), 1.

[8]

E. A. Uehling and G. E. Uhlenbeck, Transport phenomena in Einstein-Bose and Fermi-Dirac gases,, Phys. Rev., 43 (1933), 552. doi: 10.1103/PhysRev.43.552.

show all references

References:
[1]

D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, Some considerations on the derivation of the nonlinear quantum boltzmann equation,, J. Stat. Phys., 116 (2004), 381. doi: 10.1023/B:JOSS.0000037205.09518.3f.

[2]

D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, On the weak-coupling limit for bosons and fermions,, Math. Mod. Meth. Appl. Sci., 15 (2005), 1811. doi: 10.1142/S0218202505000984.

[3]

D. Benedetto, F. Castella, R. Esposito and M. Pulvirenti, From the N-body Schroedinger equation to the quantum Boltzmann equation: A term-by-term convergence result in the weak coupling regime,, Commun. Math. Phys., 277 (2008), 1. doi: 10.1007/s00220-007-0347-7.

[4]

L. Erdös, M. Salmhofer and H. T. Yau, On the quantum Boltzmann equation,, J. Stat. Phys., 116 (2004), 367. doi: 10.1023/B:JOSS.0000037224.56191.ed.

[5]

I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-range Potentials,, Zürich Lectures in Advanced Mathematics, (2013).

[6]

F. King, BBGKY Hierarchy for Positive Potentials,, Ph.D thesis, (1975).

[7]

O. E. Lanford III, Time Evolution of Large Classical Systems,, Lecture Notes in Physics, 38 (1975), 1.

[8]

E. A. Uehling and G. E. Uhlenbeck, Transport phenomena in Einstein-Bose and Fermi-Dirac gases,, Phys. Rev., 43 (1933), 552. doi: 10.1103/PhysRev.43.552.

[1]

Jianjun Yuan. Derivation of the Quintic NLS from many-body quantum dynamics in $T^2$. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1941-1960. doi: 10.3934/cpaa.2015.14.1941

[2]

Miguel Escobedo, Minh-Binh Tran. Convergence to equilibrium of a linearized quantum Boltzmann equation for bosons at very low temperature. Kinetic & Related Models, 2015, 8 (3) : 493-531. doi: 10.3934/krm.2015.8.493

[3]

Kay Kirkpatrick. Rigorous derivation of the Landau equation in the weak coupling limit. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1895-1916. doi: 10.3934/cpaa.2009.8.1895

[4]

Harald Friedrich. Semiclassical and large quantum number limits of the Schrödinger equation. Conference Publications, 2003, 2003 (Special) : 288-294. doi: 10.3934/proc.2003.2003.288

[5]

Helmut Kröger. From quantum action to quantum chaos. Conference Publications, 2003, 2003 (Special) : 492-500. doi: 10.3934/proc.2003.2003.492

[6]

Mouhamadou Aliou M. T. Baldé, Diaraf Seck. Coupling the shallow water equation with a long term dynamics of sand dunes. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1521-1551. doi: 10.3934/dcdss.2016061

[7]

Zhongyi Huang, Peter A. Markowich, Christof Sparber. Numerical simulation of trapped dipolar quantum gases: Collapse studies and vortex dynamics. Kinetic & Related Models, 2010, 3 (1) : 181-194. doi: 10.3934/krm.2010.3.181

[8]

Paolo Antonelli, Seung-Yeal Ha, Dohyun Kim, Pierangelo Marcati. The Wigner-Lohe model for quantum synchronization and its emergent dynamics. Networks & Heterogeneous Media, 2017, 12 (3) : 403-416. doi: 10.3934/nhm.2017018

[9]

Brendan Weickert. Infinite-dimensional complex dynamics: A quantum random walk. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 517-524. doi: 10.3934/dcds.2001.7.517

[10]

John Erik Fornæss. Infinite dimensional complex dynamics: Quasiconjugacies, localization and quantum chaos. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 51-60. doi: 10.3934/dcds.2000.6.51

[11]

Paolo Antonelli, Pierangelo Marcati. Quantum hydrodynamics with nonlinear interactions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 1-13. doi: 10.3934/dcdss.2016.9.1

[12]

Gabriel Rivière. Remarks on quantum ergodicity. Journal of Modern Dynamics, 2013, 7 (1) : 119-133. doi: 10.3934/jmd.2013.7.119

[13]

Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems & Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1

[14]

Dmitry Jakobson. On quantum limits on flat tori. Electronic Research Announcements, 1995, 1: 80-86.

[15]

Tai-Ping Liu, Shih-Hsien Yu. Boltzmann equation, boundary effects. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 145-157. doi: 10.3934/dcds.2009.24.145

[16]

Tomasz Komorowski, Lenya Ryzhik. Fluctuations of solutions to Wigner equation with an Ornstein-Uhlenbeck potential. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 871-914. doi: 10.3934/dcdsb.2012.17.871

[17]

Jin-Cheng Jiang, Chi-Kun Lin, Shuanglin Shao. On one dimensional quantum Zakharov system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5445-5475. doi: 10.3934/dcds.2016040

[18]

Dubi Kelmer. Quantum ergodicity for products of hyperbolic planes. Journal of Modern Dynamics, 2008, 2 (2) : 287-313. doi: 10.3934/jmd.2008.2.287

[19]

Mason A. Porter, Richard L. Liboff. The radially vibrating spherical quantum billiard. Conference Publications, 2001, 2001 (Special) : 310-318. doi: 10.3934/proc.2001.2001.310

[20]

Jianhong (Jackie) Shen, Sung Ha Kang. Quantum TV and applications in image processing. Inverse Problems & Imaging, 2007, 1 (3) : 557-575. doi: 10.3934/ipi.2007.1.557

2016 Impact Factor: 1.261

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]