• Previous Article
    How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?
  • DCDS-B Home
  • This Issue
  • Next Article
    Transversality for time-periodic competitive-cooperative tridiagonal systems
2015, 20(6): 1805-1819. doi: 10.3934/dcdsb.2015.20.1805

Positive steady state solutions of a plant-pollinator model with diffusion

1. 

Institute of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, China, China, China

Received  September 2014 Revised  December 2014 Published  June 2015

In this paper, a plant-pollinator population system with diffusion is investigated, which is described by a cooperative model with B-D functional response. Using the Leray-Schauder degree theory, we discuss the existence of positive steady state solutions of the model. The result shows when the growth rate of plants is large and the death rate of pollinators is small, the plants and pollinators can coexist. By the regular perturbation theorem and monotone dynamical system theory, the uniqueness and stability of positive solutions have been studied. Especially, we show that the unique positive solution is a global attractor under some conditions. Furthermore, we present some numerical simulations, which is not only to check our theoretical results but also to supply some conjectures out of theoretical analysis.
Citation: Lijuan Wang, Hongling Jiang, Ying Li. Positive steady state solutions of a plant-pollinator model with diffusion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1805-1819. doi: 10.3934/dcdsb.2015.20.1805
References:
[1]

J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency,, Journal of Animal Ecology, 44 (1975), 331. doi: 10.2307/3866.

[2]

J. Blat and K. J. Brown, Global bifurcation of positive solutions in some systems of elliptic equations,, SIAM Journal on Mathematical Analysis, 17 (1986), 1339. doi: 10.1137/0517094.

[3]

R. S. Cantrell and C. Cosner, On the steady-state problem for the Volterra-Lotka competition model with diffusion,, Houston J. Math., 13 (1987), 337.

[4]

C. S. Cassanova, Existece and strueture of the set of positive solutions of a general class of sublinear elliptic non-classical mixed boundary value problems,, Nonlinear Analysis: Theory, 49 (2002), 361. doi: 10.1016/S0362-546X(01)00116-X.

[5]

P. R. Crane, E. M. Friis and K. R. Pedersen, Lower cretaceous angiosperm flowers: Fossil evidence on early radiation of dicotyledons,, Science, 232 (1986), 852. doi: 10.1126/science.232.4752.852.

[6]

P. R. Crane, E. M. Friis and K. R. Pedersen, The origin and early diversification of angiosperms,, Nature, 374 (1994), 27. doi: 10.1038/374027a0.

[7]

E. N. Daneer, On the indices of fixed poins of mappings in cones and applications,, Journal of Mathematical Analysis and Applications, 91 (1983), 131. doi: 10.1016/0022-247X(83)90098-7.

[8]

C. Darwin, The Origin of Species,, Penguin Books, (1859).

[9]

C. Darwin, The Effects of Cross and Self-Fertilisation in the Vegetable Kingdom,, Appelton, (1876). doi: 10.1017/CBO9780511694202.

[10]

D. L. DeAngelis, R. A. Goldstein and R. V. O'Neill, A model for trophic interaction,, Ecology, 56 (1975), 881. doi: 10.2307/1936298.

[11]

Y. H. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey model,, Trans. Amer. Math. Soc., 349 (1997), 2443. doi: 10.1090/S0002-9947-97-01842-4.

[12]

M. A. Fishman and L. Hadany, Plant-pollinator population dynamics,, Theoretical Population Biology, 78 (2010), 270. doi: 10.1016/j.tpb.2010.08.002.

[13]

S. R. Jang, Dynamics of herbivore-plant-pollinator models,, Journal of Mathematical Biology, 44 (2002), 129. doi: 10.1007/s002850100117.

[14]

L. G. Li, Coexistence theorems of steady states for predator-prey interacting systems,, Transactions of the American Mathematical Society, 305 (1988), 143. doi: 10.1090/S0002-9947-1988-0920151-1.

[15]

L. Lou and S. Martínez and P. Poláčik, Loops and branches of coexistence states in a Lotka-Volterra competition model,, Journal of Differential Equations, 230 (2006), 720. doi: 10.1016/j.jde.2006.04.005.

[16]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, Springer, (1994). doi: 10.1007/978-1-4612-0873-0.

[17]

J. M. Soberon and C. M. Del Rio, The dynamics of a plant-pollinator interaction,, Journal of Theoretical Biology, 91 (1981), 363. doi: 10.1016/0022-5193(81)90238-1.

[18]

Y. Wang, H. Wu and S. Sun, Persistence of pollination mutualisms in plant-pollinator-robber systems,, Theoretical Population Biology, 81 (2012), 243. doi: 10.1016/j.tpb.2012.01.004.

[19]

L. J. Wang and H. L. Jiang, Properties and numerical simulations of positive solutions for a variable-territory model,, Applied Mathematics and Computation, 236 (2014), 647. doi: 10.1016/j.amc.2014.03.080.

show all references

References:
[1]

J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency,, Journal of Animal Ecology, 44 (1975), 331. doi: 10.2307/3866.

[2]

J. Blat and K. J. Brown, Global bifurcation of positive solutions in some systems of elliptic equations,, SIAM Journal on Mathematical Analysis, 17 (1986), 1339. doi: 10.1137/0517094.

[3]

R. S. Cantrell and C. Cosner, On the steady-state problem for the Volterra-Lotka competition model with diffusion,, Houston J. Math., 13 (1987), 337.

[4]

C. S. Cassanova, Existece and strueture of the set of positive solutions of a general class of sublinear elliptic non-classical mixed boundary value problems,, Nonlinear Analysis: Theory, 49 (2002), 361. doi: 10.1016/S0362-546X(01)00116-X.

[5]

P. R. Crane, E. M. Friis and K. R. Pedersen, Lower cretaceous angiosperm flowers: Fossil evidence on early radiation of dicotyledons,, Science, 232 (1986), 852. doi: 10.1126/science.232.4752.852.

[6]

P. R. Crane, E. M. Friis and K. R. Pedersen, The origin and early diversification of angiosperms,, Nature, 374 (1994), 27. doi: 10.1038/374027a0.

[7]

E. N. Daneer, On the indices of fixed poins of mappings in cones and applications,, Journal of Mathematical Analysis and Applications, 91 (1983), 131. doi: 10.1016/0022-247X(83)90098-7.

[8]

C. Darwin, The Origin of Species,, Penguin Books, (1859).

[9]

C. Darwin, The Effects of Cross and Self-Fertilisation in the Vegetable Kingdom,, Appelton, (1876). doi: 10.1017/CBO9780511694202.

[10]

D. L. DeAngelis, R. A. Goldstein and R. V. O'Neill, A model for trophic interaction,, Ecology, 56 (1975), 881. doi: 10.2307/1936298.

[11]

Y. H. Du and Y. Lou, Some uniqueness and exact multiplicity results for a predator-prey model,, Trans. Amer. Math. Soc., 349 (1997), 2443. doi: 10.1090/S0002-9947-97-01842-4.

[12]

M. A. Fishman and L. Hadany, Plant-pollinator population dynamics,, Theoretical Population Biology, 78 (2010), 270. doi: 10.1016/j.tpb.2010.08.002.

[13]

S. R. Jang, Dynamics of herbivore-plant-pollinator models,, Journal of Mathematical Biology, 44 (2002), 129. doi: 10.1007/s002850100117.

[14]

L. G. Li, Coexistence theorems of steady states for predator-prey interacting systems,, Transactions of the American Mathematical Society, 305 (1988), 143. doi: 10.1090/S0002-9947-1988-0920151-1.

[15]

L. Lou and S. Martínez and P. Poláčik, Loops and branches of coexistence states in a Lotka-Volterra competition model,, Journal of Differential Equations, 230 (2006), 720. doi: 10.1016/j.jde.2006.04.005.

[16]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, Springer, (1994). doi: 10.1007/978-1-4612-0873-0.

[17]

J. M. Soberon and C. M. Del Rio, The dynamics of a plant-pollinator interaction,, Journal of Theoretical Biology, 91 (1981), 363. doi: 10.1016/0022-5193(81)90238-1.

[18]

Y. Wang, H. Wu and S. Sun, Persistence of pollination mutualisms in plant-pollinator-robber systems,, Theoretical Population Biology, 81 (2012), 243. doi: 10.1016/j.tpb.2012.01.004.

[19]

L. J. Wang and H. L. Jiang, Properties and numerical simulations of positive solutions for a variable-territory model,, Applied Mathematics and Computation, 236 (2014), 647. doi: 10.1016/j.amc.2014.03.080.

[1]

Hua Nie, Wenhao Xie, Jianhua Wu. Uniqueness of positive steady state solutions to the unstirred chemostat model with external inhibitor. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1279-1297. doi: 10.3934/cpaa.2013.12.1279

[2]

Mi-Young Kim. Uniqueness and stability of positive periodic numerical solution of an epidemic model. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 365-375. doi: 10.3934/dcdsb.2007.7.365

[3]

Nicolas Vauchelet. Numerical simulation of a kinetic model for chemotaxis. Kinetic & Related Models, 2010, 3 (3) : 501-528. doi: 10.3934/krm.2010.3.501

[4]

Jing Liu, Xiaodong Liu, Sining Zheng, Yanping Lin. Positive steady state of a food chain system with diffusion. Conference Publications, 2007, 2007 (Special) : 667-676. doi: 10.3934/proc.2007.2007.667

[5]

Leonid Shaikhet. Stability of a positive equilibrium state for a stochastically perturbed mathematical model of glassy-winged sharpshooter population. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1167-1174. doi: 10.3934/mbe.2014.11.1167

[6]

Ana I. Muñoz, José Ignacio Tello. Mathematical analysis and numerical simulation of a model of morphogenesis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1035-1059. doi: 10.3934/mbe.2011.8.1035

[7]

Janet Dyson, Rosanna Villella-Bressan, G.F. Webb. The steady state of a maturity structured tumor cord cell population. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 115-134. doi: 10.3934/dcdsb.2004.4.115

[8]

Inom Mirzaev, David M. Bortz. A numerical framework for computing steady states of structured population models and their stability. Mathematical Biosciences & Engineering, 2017, 14 (4) : 933-952. doi: 10.3934/mbe.2017049

[9]

Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875

[10]

Daniel Ginsberg, Gideon Simpson. Analytical and numerical results on the positivity of steady state solutions of a thin film equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1305-1321. doi: 10.3934/dcdsb.2013.18.1305

[11]

Thomas Lepoutre, Salomé Martínez. Steady state analysis for a relaxed cross diffusion model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 613-633. doi: 10.3934/dcds.2014.34.613

[12]

Qi Wang. On the steady state of a shadow system to the SKT competition model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2941-2961. doi: 10.3934/dcdsb.2014.19.2941

[13]

Alexandre Caboussat, Allison Leonard. Numerical solution and fast-slow decomposition of a population of weakly coupled systems. Conference Publications, 2009, 2009 (Special) : 123-132. doi: 10.3934/proc.2009.2009.123

[14]

Eleonora Messina. Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation. Conference Publications, 2015, 2015 (special) : 826-834. doi: 10.3934/proc.2015.0826

[15]

Antonio Fasano, Marco Gabrielli, Alberto Gandolfi. Investigating the steady state of multicellular spheroids by revisiting the two-fluid model. Mathematical Biosciences & Engineering, 2011, 8 (2) : 239-252. doi: 10.3934/mbe.2011.8.239

[16]

Youcef Mammeri, Damien Sellier. A surface model of nonlinear, non-steady-state phloem transport. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1055-1069. doi: 10.3934/mbe.2017055

[17]

Federica Di Michele, Bruno Rubino, Rosella Sampalmieri. A steady-state mathematical model for an EOS capacitor: The effect of the size exclusion. Networks & Heterogeneous Media, 2016, 11 (4) : 603-625. doi: 10.3934/nhm.2016011

[18]

Mei-hua Wei, Jianhua Wu, Yinnian He. Steady-state solutions and stability for a cubic autocatalysis model. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1147-1167. doi: 10.3934/cpaa.2015.14.1147

[19]

Shanshan Chen. Nonexistence of nonconstant positive steady states of a diffusive predator-prey model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 477-485. doi: 10.3934/cpaa.2018026

[20]

Yunfeng Jia, Yi Li, Jianhua Wu. Qualitative analysis on positive steady-states for an autocatalytic reaction model in thermodynamics. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4785-4813. doi: 10.3934/dcds.2017206

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]