2015, 20(6): 1785-1803. doi: 10.3934/dcdsb.2015.20.1785

How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?

1. 

CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005 Paris, France

Received  October 2013 Revised  March 2014 Published  June 2015

We consider one-dimensional reaction-diffusion equations of Fisher-KPP type with random stationary ergodic coefficients. A classical result of Freidlin and Gartner [16] yields that the solutions of the initial value problems associated with compactly supported initial data admit a linear spreading speed almost surely. We use in this paper a new characterization of this spreading speed recently proved in [8] in order to investigate the dependence of this speed with respect to the heterogeneity of the diffusion and reaction terms. We prove in particular that adding a reaction term with null average or rescaling the coefficients by the change of variables $x\to x/L$, with $L>1$, speeds up the propagation. From a modelling point of view, these results mean that adding some heterogeneity in the medium gives a higher invasion speed, while fragmentation of the medium slows down the invasion.
Citation: Gregoire Nadin. How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1785-1803. doi: 10.3934/dcdsb.2015.20.1785
References:
[1]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics,, Adv. Math., 30 (1978), 33. doi: 10.1016/0001-8708(78)90130-5.

[2]

B. Audoly, H. Berestycki and Y. Pomeau, Réaction diffusion en écoulement stationnaire rapide,, C. R. Acad. Sci. Paris, 328 (2000), 255. doi: 10.1016/S1287-4620(00)00115-0.

[3]

H. Berestycki, F. Hamel and G. Nadin, Asymptotic spreading in heterogeneous diffusive excitable media,, J. Func. Anal., 255 (2008), 2146. doi: 10.1016/j.jfa.2008.06.030.

[4]

H. Berestycki, F. Hamel and N. Nadirashvili, Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena,, Comm. Math. Phys., 253 (2005), 451. doi: 10.1007/s00220-004-1201-9.

[5]

H. Berestycki, F. Hamel and N. Nadirashvili, The speed of propagation for kpp type problems. I - periodic framework,, J. Europ. Math. Soc., 7 (2005), 173. doi: 10.4171/JEMS/26.

[6]

H. Berestycki, F. Hamel and L.Roques, Analysis of the periodically fragmented environment model: II - Biological invasions and pulsating travelling fronts,, J. Math. Pures Appl., 84 (2005), 1101. doi: 10.1016/j.matpur.2004.10.006.

[7]

H. Berestycki, F. Hamel and L. Rossi, Liouville-type results for semilinear elliptic equations in unbounded domains,, Ann. Mat. Pura Appl., 186 (2007), 469. doi: 10.1007/s10231-006-0015-0.

[8]

H. Berestycki and G. Nadin, Spreading speeds for one-dimensional monostable reaction-diffusion equations,, J. Math. Phys., 53 (2012). doi: 10.1063/1.4764932.

[9]

H. Berestycki and L. Rossi, Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains,, Comm. Pure Appl. Math., 68 (2014), 1014. doi: 10.1002/cpa.21536.

[10]

A. Ducrot, T. Giletti and H. Matano, Existence and convergence to a propagating terrace in one-dimensional reaction-diffusion equations,, Trans. Amer. Math. Soc., 366 (2014), 5541. doi: 10.1090/S0002-9947-2014-06105-9.

[11]

M. ElSmaily, The non-monotonicity of the KPP speed with respect to diffusion in the presence of a shear flow,, Proceedings of the American Math. Society, 141 (2013), 3553. doi: 10.1090/S0002-9939-2013-11728-4.

[12]

M. ElSmaily and S. Kirsch, The speed of propagation for KPP reaction-diffusion equations within large drift,, Advances in Diff. Equations, 16 (2011), 361.

[13]

R. A. Fisher, The advance of advantageous genes,, Ann. Eugenics, 7 (1937), 335.

[14]

M. Freidlin, On wave front propagation in periodic media,, in Stochastic Analysis and Applications (ed. M. Pinsky), (1984), 147.

[15]

M. Freidlin, Functional Integration and Partial Differential Equations,, Ann. Math. Stud., (1985).

[16]

M. Freidlin and J. Gartner, On the propagation of concentration waves in periodic and random media,, Sov. Math. Dokl., 249 (1979), 521.

[17]

F. Hamel, G. Nadin and L. Roques, A viscosity solution method for the spreading speed formula in slowly varying media,, Indiana Univ. Math. J., 60 (2011), 1229. doi: 10.1512/iumj.2011.60.4370.

[18]

C. J. Holland, A minimum principle for the principal eigenvalue for second order linear elliptic equation with natural boundary condition,, Comm. Pure Appl. Math., 31 (1978), 509. doi: 10.1002/cpa.3160310406.

[19]

A. Kiselev and L. Ryzhik, Enhancement of the traveling front speeds in reaction-diffusion equations with advection,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 309. doi: 10.1016/S0294-1449(01)00068-3.

[20]

A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Etude de l équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique,, Bulletin Université d'Etat à Moscou (Bjul. Moskowskogo Gos. Univ.), (1937), 1.

[21]

X. Liang, X. Lin and H. Matano, Maximizing the spreading speed of KPP fronts in two-dimensional stratified media,, Trans. Amer. Math. Soc., 362 (2010), 5605. doi: 10.1090/S0002-9947-2010-04931-1.

[22]

P.-L. Lions and P. E. Souganidis, Homogenization of "viscous'' Hamilton-Jacobi equations in stationary ergodic media,, Comm. Partial Differential Equations, 30 (2005), 335. doi: 10.1081/PDE-200050077.

[23]

G. Nadin, The effect of the Schwarz rearrangement on the periodic principal eigenvalue of a nonsymmetric operator,, SIAM J. Math. Anal., 41 (2009), 2388. doi: 10.1137/080743597.

[24]

G. Nadin, Some dependence results between the spreading speed and the coefficients of the space-time periodic Fisher-KPP equation,, Eur. J. Appl. Math., 22 (2011), 169. doi: 10.1017/S0956792511000027.

[25]

J. Nolen, A central limit theorem for pulled fronts in a random medium,, Networks and Heterogeneous Media, 6 (2011), 167. doi: 10.3934/nhm.2011.6.167.

[26]

J. Nolen and L. Ryzhik, Traveling waves in a one-dimensional random medium,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1021. doi: 10.1016/j.anihpc.2009.02.003.

[27]

J. Nolen and J. Xin, Asymptotic spreading of KPP reactive fronts in incompressible space-time random flows,, Ann. de l'Inst. Henri Poincare - Analyse Non Lineaire, 26 (2008), 815. doi: 10.1016/j.anihpc.2008.02.005.

[28]

J. Nolen and J. Xin, KPP fronts in 1D random drift,, Discrete and Continuous Dynamical Systems B, 11 (2009), 421. doi: 10.3934/dcdsb.2009.11.421.

[29]

J. Nolen and J. Xin, Variational principle of KPP front speeds in temporally random shear flows with applications,, Communications in Mathematical Physics, 269 (2007), 493. doi: 10.1007/s00220-006-0144-8.

[30]

G. C. Papanicolaou and S. R. S. Varadhan, Boundary value problems with rapidly oscillating random coefficients,, in Proceedings of Conference on Random Fields, (1979), 835.

[31]

L. Ryzhik and A. Zlatos, KPP pulsating front speed-up by flows,, Commun. Math. Sci., 5 (2007), 575. doi: 10.4310/CMS.2007.v5.n3.a4.

[32]

N. Shigesada, K. Kawasaki and E. Teramoto, Traveling periodic waves in heterogeneous environments,, Theor. Population Biol., 30 (1986), 143. doi: 10.1016/0040-5809(86)90029-8.

[33]

N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice,, Oxford Series in Ecology and Evolution, (1997).

[34]

P. E. Souganidis, Stochastic homogenization of Hamilton-Jacobi equations and some applications,, Asymptotic Analysis, 20 (1999), 1.

[35]

V. V. Zhikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals,, Springer-Verlag, (1994). doi: 10.1007/978-3-642-84659-5.

[36]

A. Zlatos, Sharp asymptotics for KPP pulsating front speed-up and diffusion enhancement by flows,, Arch. Ration. Mech. Anal., 195 (2009), 441. doi: 10.1007/s00205-009-0282-1.

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics,, Adv. Math., 30 (1978), 33. doi: 10.1016/0001-8708(78)90130-5.

[2]

B. Audoly, H. Berestycki and Y. Pomeau, Réaction diffusion en écoulement stationnaire rapide,, C. R. Acad. Sci. Paris, 328 (2000), 255. doi: 10.1016/S1287-4620(00)00115-0.

[3]

H. Berestycki, F. Hamel and G. Nadin, Asymptotic spreading in heterogeneous diffusive excitable media,, J. Func. Anal., 255 (2008), 2146. doi: 10.1016/j.jfa.2008.06.030.

[4]

H. Berestycki, F. Hamel and N. Nadirashvili, Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena,, Comm. Math. Phys., 253 (2005), 451. doi: 10.1007/s00220-004-1201-9.

[5]

H. Berestycki, F. Hamel and N. Nadirashvili, The speed of propagation for kpp type problems. I - periodic framework,, J. Europ. Math. Soc., 7 (2005), 173. doi: 10.4171/JEMS/26.

[6]

H. Berestycki, F. Hamel and L.Roques, Analysis of the periodically fragmented environment model: II - Biological invasions and pulsating travelling fronts,, J. Math. Pures Appl., 84 (2005), 1101. doi: 10.1016/j.matpur.2004.10.006.

[7]

H. Berestycki, F. Hamel and L. Rossi, Liouville-type results for semilinear elliptic equations in unbounded domains,, Ann. Mat. Pura Appl., 186 (2007), 469. doi: 10.1007/s10231-006-0015-0.

[8]

H. Berestycki and G. Nadin, Spreading speeds for one-dimensional monostable reaction-diffusion equations,, J. Math. Phys., 53 (2012). doi: 10.1063/1.4764932.

[9]

H. Berestycki and L. Rossi, Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains,, Comm. Pure Appl. Math., 68 (2014), 1014. doi: 10.1002/cpa.21536.

[10]

A. Ducrot, T. Giletti and H. Matano, Existence and convergence to a propagating terrace in one-dimensional reaction-diffusion equations,, Trans. Amer. Math. Soc., 366 (2014), 5541. doi: 10.1090/S0002-9947-2014-06105-9.

[11]

M. ElSmaily, The non-monotonicity of the KPP speed with respect to diffusion in the presence of a shear flow,, Proceedings of the American Math. Society, 141 (2013), 3553. doi: 10.1090/S0002-9939-2013-11728-4.

[12]

M. ElSmaily and S. Kirsch, The speed of propagation for KPP reaction-diffusion equations within large drift,, Advances in Diff. Equations, 16 (2011), 361.

[13]

R. A. Fisher, The advance of advantageous genes,, Ann. Eugenics, 7 (1937), 335.

[14]

M. Freidlin, On wave front propagation in periodic media,, in Stochastic Analysis and Applications (ed. M. Pinsky), (1984), 147.

[15]

M. Freidlin, Functional Integration and Partial Differential Equations,, Ann. Math. Stud., (1985).

[16]

M. Freidlin and J. Gartner, On the propagation of concentration waves in periodic and random media,, Sov. Math. Dokl., 249 (1979), 521.

[17]

F. Hamel, G. Nadin and L. Roques, A viscosity solution method for the spreading speed formula in slowly varying media,, Indiana Univ. Math. J., 60 (2011), 1229. doi: 10.1512/iumj.2011.60.4370.

[18]

C. J. Holland, A minimum principle for the principal eigenvalue for second order linear elliptic equation with natural boundary condition,, Comm. Pure Appl. Math., 31 (1978), 509. doi: 10.1002/cpa.3160310406.

[19]

A. Kiselev and L. Ryzhik, Enhancement of the traveling front speeds in reaction-diffusion equations with advection,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 309. doi: 10.1016/S0294-1449(01)00068-3.

[20]

A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Etude de l équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique,, Bulletin Université d'Etat à Moscou (Bjul. Moskowskogo Gos. Univ.), (1937), 1.

[21]

X. Liang, X. Lin and H. Matano, Maximizing the spreading speed of KPP fronts in two-dimensional stratified media,, Trans. Amer. Math. Soc., 362 (2010), 5605. doi: 10.1090/S0002-9947-2010-04931-1.

[22]

P.-L. Lions and P. E. Souganidis, Homogenization of "viscous'' Hamilton-Jacobi equations in stationary ergodic media,, Comm. Partial Differential Equations, 30 (2005), 335. doi: 10.1081/PDE-200050077.

[23]

G. Nadin, The effect of the Schwarz rearrangement on the periodic principal eigenvalue of a nonsymmetric operator,, SIAM J. Math. Anal., 41 (2009), 2388. doi: 10.1137/080743597.

[24]

G. Nadin, Some dependence results between the spreading speed and the coefficients of the space-time periodic Fisher-KPP equation,, Eur. J. Appl. Math., 22 (2011), 169. doi: 10.1017/S0956792511000027.

[25]

J. Nolen, A central limit theorem for pulled fronts in a random medium,, Networks and Heterogeneous Media, 6 (2011), 167. doi: 10.3934/nhm.2011.6.167.

[26]

J. Nolen and L. Ryzhik, Traveling waves in a one-dimensional random medium,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1021. doi: 10.1016/j.anihpc.2009.02.003.

[27]

J. Nolen and J. Xin, Asymptotic spreading of KPP reactive fronts in incompressible space-time random flows,, Ann. de l'Inst. Henri Poincare - Analyse Non Lineaire, 26 (2008), 815. doi: 10.1016/j.anihpc.2008.02.005.

[28]

J. Nolen and J. Xin, KPP fronts in 1D random drift,, Discrete and Continuous Dynamical Systems B, 11 (2009), 421. doi: 10.3934/dcdsb.2009.11.421.

[29]

J. Nolen and J. Xin, Variational principle of KPP front speeds in temporally random shear flows with applications,, Communications in Mathematical Physics, 269 (2007), 493. doi: 10.1007/s00220-006-0144-8.

[30]

G. C. Papanicolaou and S. R. S. Varadhan, Boundary value problems with rapidly oscillating random coefficients,, in Proceedings of Conference on Random Fields, (1979), 835.

[31]

L. Ryzhik and A. Zlatos, KPP pulsating front speed-up by flows,, Commun. Math. Sci., 5 (2007), 575. doi: 10.4310/CMS.2007.v5.n3.a4.

[32]

N. Shigesada, K. Kawasaki and E. Teramoto, Traveling periodic waves in heterogeneous environments,, Theor. Population Biol., 30 (1986), 143. doi: 10.1016/0040-5809(86)90029-8.

[33]

N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice,, Oxford Series in Ecology and Evolution, (1997).

[34]

P. E. Souganidis, Stochastic homogenization of Hamilton-Jacobi equations and some applications,, Asymptotic Analysis, 20 (1999), 1.

[35]

V. V. Zhikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals,, Springer-Verlag, (1994). doi: 10.1007/978-3-642-84659-5.

[36]

A. Zlatos, Sharp asymptotics for KPP pulsating front speed-up and diffusion enhancement by flows,, Arch. Ration. Mech. Anal., 195 (2009), 441. doi: 10.1007/s00205-009-0282-1.

[1]

Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591

[2]

Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure & Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229

[3]

Patrick De Kepper, István Szalai. An effective design method to produce stationary chemical reaction-diffusion patterns. Communications on Pure & Applied Analysis, 2012, 11 (1) : 189-207. doi: 10.3934/cpaa.2012.11.189

[4]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-26. doi: 10.3934/dcdsb.2018223

[5]

Tomás Caraballo, José A. Langa, James C. Robinson. Stability and random attractors for a reaction-diffusion equation with multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 875-892. doi: 10.3934/dcds.2000.6.875

[6]

Yuncheng You. Random attractors and robustness for stochastic reversible reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 301-333. doi: 10.3934/dcds.2014.34.301

[7]

Hans F. Weinberger, Kohkichi Kawasaki, Nanako Shigesada. Spreading speeds for a partially cooperative 2-species reaction-diffusion model. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 1087-1098. doi: 10.3934/dcds.2009.23.1087

[8]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

[9]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-23. doi: 10.3934/dcdsb.2018126

[10]

Martino Prizzi. A remark on reaction-diffusion equations in unbounded domains. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 281-286. doi: 10.3934/dcds.2003.9.281

[11]

Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations & Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43

[12]

Peter E. Kloeden, Thomas Lorenz, Meihua Yang. Reaction-diffusion equations with a switched--off reaction zone. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1907-1933. doi: 10.3934/cpaa.2014.13.1907

[13]

Jacson Simsen, Mariza Stefanello Simsen, Marcos Roberto Teixeira Primo. Reaction-Diffusion equations with spatially variable exponents and large diffusion. Communications on Pure & Applied Analysis, 2016, 15 (2) : 495-506. doi: 10.3934/cpaa.2016.15.495

[14]

L. Cherfils, Y. Il'yasov. On the stationary solutions of generalized reaction diffusion equations with $p\& q$-Laplacian. Communications on Pure & Applied Analysis, 2005, 4 (1) : 9-22. doi: 10.3934/cpaa.2005.4.9

[15]

Jong-Shenq Guo, Yoshihisa Morita. Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 193-212. doi: 10.3934/dcds.2005.12.193

[16]

Antoine Mellet, Jean-Michel Roquejoffre, Yannick Sire. Generalized fronts for one-dimensional reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 303-312. doi: 10.3934/dcds.2010.26.303

[17]

Matthieu Alfaro, Thomas Giletti. Varying the direction of propagation in reaction-diffusion equations in periodic media. Networks & Heterogeneous Media, 2016, 11 (3) : 369-393. doi: 10.3934/nhm.2016001

[18]

Wei Wang, Anthony Roberts. Macroscopic discrete modelling of stochastic reaction-diffusion equations on a periodic domain. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 253-273. doi: 10.3934/dcds.2011.31.253

[19]

Sven Jarohs, Tobias Weth. Asymptotic symmetry for a class of nonlinear fractional reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2581-2615. doi: 10.3934/dcds.2014.34.2581

[20]

Ivan Gentil, Bogusław Zegarlinski. Asymptotic behaviour of reversible chemical reaction-diffusion equations. Kinetic & Related Models, 2010, 3 (3) : 427-444. doi: 10.3934/krm.2010.3.427

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]