2015, 20(6): 1663-1684. doi: 10.3934/dcdsb.2015.20.1663

Spreading speeds and traveling wave solutions in cooperative integral-differential systems

1. 

Department of Mathematics, University of Louisville, Louisville, KY 40292

2. 

School of Mathematics and Statistical Sciences, Arizona State University, Tempe, AZ 85281

3. 

School of Mathematics and Statistics, Arizona State University, Tempe, AZ 85287, United States

Received  November 2013 Revised  February 2015 Published  June 2015

We study a cooperative system of integro-differential equations. It is shown that the system in general has multiple spreading speeds, and when the linear determinacy conditions are satisfied all the spreading speeds are the same and equal to the spreading speed of the linearized system. The existence of traveling wave solutions is established via integral systems. It is shown that when the linear determinacy conditions are satisfied, if the unique spreading speed is not zero then it may be characterized as the slowest speed of a class of traveling wave solutions. Some examples are presented to illustrate the theoretical results.
Citation: Changbing Hu, Yang Kuang, Bingtuan Li, Hao Liu. Spreading speeds and traveling wave solutions in cooperative integral-differential systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1663-1684. doi: 10.3934/dcdsb.2015.20.1663
References:
[1]

S. Fedotov, Front propagation into an unstable state of reaction-transport systems,, Phys. Rev. Lett., 86 (2001), 926. doi: 10.1103/PhysRevLett.86.926.

[2]

Y. Jin and X. -Q. Zhao, Spatial dynamics of a periodic population model with dispersal,, Nonlinearity, 22 (2009), 1167. doi: 10.1088/0951-7715/22/5/011.

[3]

M. A. Lewis, B. Li and H. F. Weinberger, Spreading speeds and linear conjecture for two-species competition models,, J. Math. Biol., 45 (2002), 219. doi: 10.1007/s002850200144.

[4]

B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci., 196 (2005), 82. doi: 10.1016/j.mbs.2005.03.008.

[5]

B. Li, Traveling wave solutions in partially degenerate cooperative reaction-diffusion systems,, J. Diff. Eqs., 252 (2012), 4842. doi: 10.1016/j.jde.2012.01.018.

[6]

B. Li and L. Zhang, Travelling wave solutions in delayed cooperative systems,, Nonlinearity, 24 (2011), 1759. doi: 10.1088/0951-7715/24/6/004.

[7]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Commun. Pure Appl. Math., 60 (2007), 1. doi: 10.1002/cpa.20154.

[8]

X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems,, J. Funct. Anal., 259 (2010), 857. doi: 10.1016/j.jfa.2010.04.018.

[9]

R. Lui, Biological growth and spread modeled by systems of recursions I. Mathematical theory,, Math. Biosci., 93 (1989), 269. doi: 10.1016/0025-5564(89)90026-6.

[10]

F. Lutscher, E. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations,, SIAM Rev., 47 (2005), 749. doi: 10.1137/050636152.

[11]

V. Méndez, T. Pujol and J. Fort, Dispersal probability distributions and the wave-front speed problem,, Phys. Rev. E., 65 (2002), 1.

[12]

K. Meyer and B. Li, A spatial model of plants with an age-Structured seed bank and juvenile stage,, SIAM. J. Appl. Math., 73 (2013), 1676. doi: 10.1137/120880501.

[13]

J. Medlock and M. Kot, Spreading disease: Integral-differential equations old and new,, Math. Biosci., 184 (2003), 201. doi: 10.1016/S0025-5564(03)00041-5.

[14]

D. Mollison, Dependence of epidemic and population velocities on basic parameters,, Math. Biosci., 107 (1991), 255. doi: 10.1016/0025-5564(91)90009-8.

[15]

S. Pan and G. Lin, Invasion traveling wave solutions of a competitive system with dispersal,, Bound. Value Probl., 2012 (2012). doi: 10.1186/1687-2770-2012-120.

[16]

Y.-J. Sun, W.-T. Li and Z.-C. Wang, Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonlinearity,, Nonlinear Anal., 74 (2011), 814. doi: 10.1016/j.na.2010.09.032.

[17]

H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models,, J. Math. Biol., 45 (2002), 183. doi: 10.1007/s002850200145.

[18]

H. F. Weinberger, M. A. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems,, J. Math. Biol., 55 (2007), 207. doi: 10.1007/s00285-007-0078-6.

[19]

Z.-X. Yu and R. Yuan, Travelling wave solutions in nonlocal reactiondiffusion systems with delays and applications,, ANZIAM J., 51 (2009), 49. doi: 10.1017/S1446181109000406.

[20]

L. Zhang and B. Li, Traveling waves in an integro-differential competition model,, Discrete and Continuous Dynamical Systems-Series B, 17 (2012), 417. doi: 10.3934/dcdsb.2012.17.417.

show all references

References:
[1]

S. Fedotov, Front propagation into an unstable state of reaction-transport systems,, Phys. Rev. Lett., 86 (2001), 926. doi: 10.1103/PhysRevLett.86.926.

[2]

Y. Jin and X. -Q. Zhao, Spatial dynamics of a periodic population model with dispersal,, Nonlinearity, 22 (2009), 1167. doi: 10.1088/0951-7715/22/5/011.

[3]

M. A. Lewis, B. Li and H. F. Weinberger, Spreading speeds and linear conjecture for two-species competition models,, J. Math. Biol., 45 (2002), 219. doi: 10.1007/s002850200144.

[4]

B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci., 196 (2005), 82. doi: 10.1016/j.mbs.2005.03.008.

[5]

B. Li, Traveling wave solutions in partially degenerate cooperative reaction-diffusion systems,, J. Diff. Eqs., 252 (2012), 4842. doi: 10.1016/j.jde.2012.01.018.

[6]

B. Li and L. Zhang, Travelling wave solutions in delayed cooperative systems,, Nonlinearity, 24 (2011), 1759. doi: 10.1088/0951-7715/24/6/004.

[7]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Commun. Pure Appl. Math., 60 (2007), 1. doi: 10.1002/cpa.20154.

[8]

X. Liang and X.-Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems,, J. Funct. Anal., 259 (2010), 857. doi: 10.1016/j.jfa.2010.04.018.

[9]

R. Lui, Biological growth and spread modeled by systems of recursions I. Mathematical theory,, Math. Biosci., 93 (1989), 269. doi: 10.1016/0025-5564(89)90026-6.

[10]

F. Lutscher, E. Pachepsky and M. A. Lewis, The effect of dispersal patterns on stream populations,, SIAM Rev., 47 (2005), 749. doi: 10.1137/050636152.

[11]

V. Méndez, T. Pujol and J. Fort, Dispersal probability distributions and the wave-front speed problem,, Phys. Rev. E., 65 (2002), 1.

[12]

K. Meyer and B. Li, A spatial model of plants with an age-Structured seed bank and juvenile stage,, SIAM. J. Appl. Math., 73 (2013), 1676. doi: 10.1137/120880501.

[13]

J. Medlock and M. Kot, Spreading disease: Integral-differential equations old and new,, Math. Biosci., 184 (2003), 201. doi: 10.1016/S0025-5564(03)00041-5.

[14]

D. Mollison, Dependence of epidemic and population velocities on basic parameters,, Math. Biosci., 107 (1991), 255. doi: 10.1016/0025-5564(91)90009-8.

[15]

S. Pan and G. Lin, Invasion traveling wave solutions of a competitive system with dispersal,, Bound. Value Probl., 2012 (2012). doi: 10.1186/1687-2770-2012-120.

[16]

Y.-J. Sun, W.-T. Li and Z.-C. Wang, Traveling waves for a nonlocal anisotropic dispersal equation with monostable nonlinearity,, Nonlinear Anal., 74 (2011), 814. doi: 10.1016/j.na.2010.09.032.

[17]

H. F. Weinberger, M. A. Lewis and B. Li, Analysis of linear determinacy for spread in cooperative models,, J. Math. Biol., 45 (2002), 183. doi: 10.1007/s002850200145.

[18]

H. F. Weinberger, M. A. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems,, J. Math. Biol., 55 (2007), 207. doi: 10.1007/s00285-007-0078-6.

[19]

Z.-X. Yu and R. Yuan, Travelling wave solutions in nonlocal reactiondiffusion systems with delays and applications,, ANZIAM J., 51 (2009), 49. doi: 10.1017/S1446181109000406.

[20]

L. Zhang and B. Li, Traveling waves in an integro-differential competition model,, Discrete and Continuous Dynamical Systems-Series B, 17 (2012), 417. doi: 10.3934/dcdsb.2012.17.417.

[1]

Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441

[2]

Jong-Shenq Guo, Ying-Chih Lin. Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 101-124. doi: 10.3934/dcds.2012.32.101

[3]

Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855

[4]

Changlu Liu, Shuangli Qiao. Symmetry and monotonicity for a system of integral equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1925-1932. doi: 10.3934/cpaa.2009.8.1925

[5]

Wenxiong Chen, Congming Li. Regularity of solutions for a system of integral equations. Communications on Pure & Applied Analysis, 2005, 4 (1) : 1-8. doi: 10.3934/cpaa.2005.4.1

[6]

Nguyen Dinh Cong, Doan Thai Son. On integral separation of bounded linear random differential equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 995-1007. doi: 10.3934/dcdss.2016038

[7]

Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067

[8]

Wenxiong Chen, Congming Li. An integral system and the Lane-Emden conjecture. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1167-1184. doi: 10.3934/dcds.2009.24.1167

[9]

Jingbo Dou, Ye Li. Liouville theorem for an integral system on the upper half space. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 155-171. doi: 10.3934/dcds.2015.35.155

[10]

Jong-Shenq Guo, Ying-Chih Lin. The sign of the wave speed for the Lotka-Volterra competition-diffusion system. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2083-2090. doi: 10.3934/cpaa.2013.12.2083

[11]

Lu Chen, Zhao Liu, Guozhen Lu. Qualitative properties of solutions to an integral system associated with the Bessel potential. Communications on Pure & Applied Analysis, 2016, 15 (3) : 893-906. doi: 10.3934/cpaa.2016.15.893

[12]

Wu Chen, Zhongxue Lu. Existence and nonexistence of positive solutions to an integral system involving Wolff potential. Communications on Pure & Applied Analysis, 2016, 15 (2) : 385-398. doi: 10.3934/cpaa.2016.15.385

[13]

Dongyan Li, Yongzhong Wang. Nonexistence of positive solutions for a system of integral equations on $R^n_+$ and applications. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2601-2613. doi: 10.3934/cpaa.2013.12.2601

[14]

Jiankai Xu, Song Jiang, Huoxiong Wu. Some properties of positive solutions for an integral system with the double weighted Riesz potentials. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2117-2134. doi: 10.3934/cpaa.2016030

[15]

Huan Chen, Zhongxue Lü. The properties of positive solutions to an integral system involving Wolff potential. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1879-1904. doi: 10.3934/dcds.2014.34.1879

[16]

Weiwei Zhao, Jinge Yang, Sining Zheng. Liouville type theorem to an integral system in the half-space. Communications on Pure & Applied Analysis, 2014, 13 (2) : 511-525. doi: 10.3934/cpaa.2014.13.511

[17]

Rachidi B. Salako, Wenxian Shen. Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6189-6225. doi: 10.3934/dcds.2017268

[18]

Carlos Castillo-Chavez, Bingtuan Li, Haiyan Wang. Some recent developments on linear determinacy. Mathematical Biosciences & Engineering, 2013, 10 (5/6) : 1419-1436. doi: 10.3934/mbe.2013.10.1419

[19]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[20]

Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]