• Previous Article
    Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards
  • JMD Home
  • This Issue
  • Next Article
    Rigidity of Julia sets for Hénon type maps
2014, 8(3&4): 437-497. doi: 10.3934/jmd.2014.8.437

Lectures on dynamics, fractal geometry, and metric number theory

1. 

Einstein Institute of Mathematics, The Hebrew University, Jerusalem 91904, Israel

Received  December 2013 Revised  August 2014 Published  April 2015

These notes are based on lectures delivered in the summer school ``Modern Dynamics and its Interaction with Analysis, Geometry and Number Theory'', held in Będlewo, Poland, in the summer of 2011. The course is an exposition of Furstenberg's conjectures on ``transversality'' of the maps $x\rightarrow ax $mod1 and $x\mapsto bx$mod1 for multiplicatively independent integers $a,b$, and of the associated problems on intersections and sums of invariant sets for these maps. The first part of the course is a short introduction to fractal geometry. The second part develops the theory of Furstenberg's CP-chains and local entropy averages, ending in proofs of the sumset problem and of the known case of the intersections conjecture.
Citation: Michael Hochman. Lectures on dynamics, fractal geometry, and metric number theory. Journal of Modern Dynamics, 2014, 8 (3&4) : 437-497. doi: 10.3934/jmd.2014.8.437
References:
[1]

R. Broderick, Y. Bugeaud, L. Fishman, D. Kleinbock and B. Weiss, Schmidt's game, fractals, and numbers normal to no base,, Math. Res. Lett., 17 (2010), 307. doi: 10.4310/MRL.2010.v17.n2.a10.

[2]

J. W. S. Cassels, On a problem of Steinhaus about normal numbers,, Colloq. Math., 7 (1959), 95.

[3]

T. M. Cover and J. A. Thomas, Elements of Information Theory,, Second edition, (2006).

[4]

P. Erdős, Some unconventional problems in number theory,, Math. Mag., 52 (1979), 67. doi: 10.2307/2689842.

[5]

K. J. Falconer, The Geometry of Fractal Sets,, Cambridge Tracts in Mathematics, (1986).

[6]

H. Furstenberg, Intersections of Cantor sets and transversality of semigroups,, in Problems in Analysis (Sympos. Salomon Bochner, (1969), 41.

[7]

H. Furstenberg, Ergodic fractal measures and dimension conservation,, Ergodic Theory Dynam. Systems, 28 (2008), 405. doi: 10.1017/S0143385708000084.

[8]

M. Hochman, Dynamics on fractals and fractal distributions,, preprint, (2010).

[9]

M. Hochman and P. Shmerkin, Local entropy and dimension of projections,, to appear in Annals of Mathematics, (2009).

[10]

M. Hochman and P. Shmerkin, Local entropy averages and projections of fractal measures,, Ann. of Math. (2), 175 (2012), 1001. doi: 10.4007/annals.2012.175.3.1.

[11]

B. Host, Nombres normaux, entropie, translations,, Israel J. Math., 91 (1995), 419. doi: 10.1007/BF02761660.

[12]

B. R. Hunt and V. Yu. Kaloshin, How projections affect the dimension spectrum of fractal measures,, Nonlinearity, 10 (1997), 1031. doi: 10.1088/0951-7715/10/5/002.

[13]

J. C. Lagarias, Ternary expansions of powers of 2,, J. Lond. Math. Soc. (2), 79 (2009), 562. doi: 10.1112/jlms/jdn080.

[14]

R. Lyons, Strong laws of large numbers for weakly correlated random variables,, Michigan Math. J., 35 (1988), 353. doi: 10.1307/mmj/1029003816.

[15]

P. Mattila, Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability,, Cambridge Studies in Advanced Mathematics, (1995). doi: 10.1017/CBO9780511623813.

[16]

Y. Peres and P. Shmerkin, Resonance between Cantor sets,, Ergodic Theory Dynam. Systems, 29 (2009), 201. doi: 10.1017/S0143385708000369.

[17]

D. Preiss, Geometry of measures in $R^n$: Distribution, rectifiability, and densities,, Ann. of Math. (2), 125 (1987), 537. doi: 10.2307/1971410.

[18]

W. M. Schmidt, On normal numbers,, Pacific J. Math., 10 (1960), 661. doi: 10.2140/pjm.1960.10.661.

[19]

T. Wolff, Recent work connected with the Kakeya problem,, in Prospects in Mathematics (Princeton, (1996), 129.

show all references

References:
[1]

R. Broderick, Y. Bugeaud, L. Fishman, D. Kleinbock and B. Weiss, Schmidt's game, fractals, and numbers normal to no base,, Math. Res. Lett., 17 (2010), 307. doi: 10.4310/MRL.2010.v17.n2.a10.

[2]

J. W. S. Cassels, On a problem of Steinhaus about normal numbers,, Colloq. Math., 7 (1959), 95.

[3]

T. M. Cover and J. A. Thomas, Elements of Information Theory,, Second edition, (2006).

[4]

P. Erdős, Some unconventional problems in number theory,, Math. Mag., 52 (1979), 67. doi: 10.2307/2689842.

[5]

K. J. Falconer, The Geometry of Fractal Sets,, Cambridge Tracts in Mathematics, (1986).

[6]

H. Furstenberg, Intersections of Cantor sets and transversality of semigroups,, in Problems in Analysis (Sympos. Salomon Bochner, (1969), 41.

[7]

H. Furstenberg, Ergodic fractal measures and dimension conservation,, Ergodic Theory Dynam. Systems, 28 (2008), 405. doi: 10.1017/S0143385708000084.

[8]

M. Hochman, Dynamics on fractals and fractal distributions,, preprint, (2010).

[9]

M. Hochman and P. Shmerkin, Local entropy and dimension of projections,, to appear in Annals of Mathematics, (2009).

[10]

M. Hochman and P. Shmerkin, Local entropy averages and projections of fractal measures,, Ann. of Math. (2), 175 (2012), 1001. doi: 10.4007/annals.2012.175.3.1.

[11]

B. Host, Nombres normaux, entropie, translations,, Israel J. Math., 91 (1995), 419. doi: 10.1007/BF02761660.

[12]

B. R. Hunt and V. Yu. Kaloshin, How projections affect the dimension spectrum of fractal measures,, Nonlinearity, 10 (1997), 1031. doi: 10.1088/0951-7715/10/5/002.

[13]

J. C. Lagarias, Ternary expansions of powers of 2,, J. Lond. Math. Soc. (2), 79 (2009), 562. doi: 10.1112/jlms/jdn080.

[14]

R. Lyons, Strong laws of large numbers for weakly correlated random variables,, Michigan Math. J., 35 (1988), 353. doi: 10.1307/mmj/1029003816.

[15]

P. Mattila, Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability,, Cambridge Studies in Advanced Mathematics, (1995). doi: 10.1017/CBO9780511623813.

[16]

Y. Peres and P. Shmerkin, Resonance between Cantor sets,, Ergodic Theory Dynam. Systems, 29 (2009), 201. doi: 10.1017/S0143385708000369.

[17]

D. Preiss, Geometry of measures in $R^n$: Distribution, rectifiability, and densities,, Ann. of Math. (2), 125 (1987), 537. doi: 10.2307/1971410.

[18]

W. M. Schmidt, On normal numbers,, Pacific J. Math., 10 (1960), 661. doi: 10.2140/pjm.1960.10.661.

[19]

T. Wolff, Recent work connected with the Kakeya problem,, in Prospects in Mathematics (Princeton, (1996), 129.

[1]

Hiroki Sumi, Mariusz Urbański. Bowen parameter and Hausdorff dimension for expanding rational semigroups. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2591-2606. doi: 10.3934/dcds.2012.32.2591

[2]

Nikolai Dokuchaev. Dimension reduction and Mutual Fund Theorem in maximin setting for bond market. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1039-1053. doi: 10.3934/dcdsb.2011.16.1039

[3]

Ali Gholami, Mauricio D. Sacchi. Time-invariant radon transform by generalized Fourier slice theorem. Inverse Problems & Imaging, 2017, 11 (3) : 501-519. doi: 10.3934/ipi.2017023

[4]

Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018

[5]

Qiang Li. A kind of generalized transversality theorem for $C^r$ mapping with parameter. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1043-1050. doi: 10.3934/dcdss.2017055

[6]

Shmuel Friedland, Gunter Ochs. Hausdorff dimension, strong hyperbolicity and complex dynamics. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 405-430. doi: 10.3934/dcds.1998.4.405

[7]

Sara Munday. On Hausdorff dimension and cusp excursions for Fuchsian groups. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2503-2520. doi: 10.3934/dcds.2012.32.2503

[8]

Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114-118.

[9]

Jon Chaika. Hausdorff dimension for ergodic measures of interval exchange transformations. Journal of Modern Dynamics, 2008, 2 (3) : 457-464. doi: 10.3934/jmd.2008.2.457

[10]

Krzysztof Barański, Michał Wardal. On the Hausdorff dimension of the Sierpiński Julia sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3293-3313. doi: 10.3934/dcds.2015.35.3293

[11]

Rüdiger Achilles, Andrea Bonfiglioli, Jacob Katriel. The $\boldsymbol{q}$-deformed Campbell-Baker-Hausdorff-Dynkin theorem. Electronic Research Announcements, 2015, 22: 32-45. doi: 10.3934/era.2015.22.32

[12]

Krzysztof Barański. Hausdorff dimension of self-affine limit sets with an invariant direction. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1015-1023. doi: 10.3934/dcds.2008.21.1015

[13]

Doug Hensley. Continued fractions, Cantor sets, Hausdorff dimension, and transfer operators and their analytic extension. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2417-2436. doi: 10.3934/dcds.2012.32.2417

[14]

Cristina Lizana, Leonardo Mora. Lower bounds for the Hausdorff dimension of the geometric Lorenz attractor: The homoclinic case. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 699-709. doi: 10.3934/dcds.2008.22.699

[15]

Paul Wright. Differentiability of Hausdorff dimension of the non-wandering set in a planar open billiard. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3993-4014. doi: 10.3934/dcds.2016.36.3993

[16]

Thomas Jordan, Mark Pollicott. The Hausdorff dimension of measures for iterated function systems which contract on average. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 235-246. doi: 10.3934/dcds.2008.22.235

[17]

Vanderlei Horita, Marcelo Viana. Hausdorff dimension for non-hyperbolic repellers II: DA diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1125-1152. doi: 10.3934/dcds.2005.13.1125

[18]

Carlos Matheus, Jacob Palis. An estimate on the Hausdorff dimension of stable sets of non-uniformly hyperbolic horseshoes. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 431-448. doi: 10.3934/dcds.2018020

[19]

Lulu Fang, Min Wu. Hausdorff dimension of certain sets arising in Engel continued fractions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2375-2393. doi: 10.3934/dcds.2018098

[20]

Aline Cerqueira, Carlos Matheus, Carlos Gustavo Moreira. Continuity of Hausdorff dimension across generic dynamical Lagrange and Markov spectra. Journal of Modern Dynamics, 2018, 12: 151-174. doi: 10.3934/jmd.2018006

2017 Impact Factor: 0.425

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]