2014, 8(3/4): 271-436. doi: 10.3934/jmd.2014.8.271

Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards

1. 

Department of Mathematics, University of Maryland, College Park, MD 20742-4015

2. 

CNRS, LAGA, Institut Galilée, Université Paris 13, 99, Av. Jean-Baptiste Clément 93430, Villetaneuse, France

Received  January 2013 Revised  June 2014 Published  April 2015

This text is an expanded version of the lecture notes of a minicourse (with the same title of this text) delivered by the authors in the Będlewo school ``Modern Dynamics and its Interaction with Analysis, Geometry and Number Theory'' (from 4 to 16 July, 2011).
    In the first part of this text, i.e., from Sections 1 to 5, we discuss the Teichmüller and moduli space of translation surfaces, the Teichmüller flow and the $SL(2,\mathbb{R})$-action on these moduli spaces and the Kontsevich--Zorich cocycle over the Teichmüller geodesic flow. We sketch two applications of the ergodic properties of the Teichmüller flow and Kontsevich--Zorich cocycle, with respect to Masur--Veech measures, to the unique ergodicity, deviation of ergodic averages and weak mixing properties of typical interval exchange transformations and translation flows. These applications are based on the fundamental fact that the Teichmüller flow and the Kontsevich--Zorich cocycle work as renormalization dynamics for interval exchange transformations and translation flows.
    In the second part, i.e., from Sections 6 to 9, we start by pointing out that it is interesting to study the ergodic properties of the Kontsevich--Zorich cocycle with respect to invariant measures other than the Masur--Veech ones, in view of potential applications to the investigation of billiards in rational polygons (for instance). We then study some examples of measures for which the ergodic properties of the Kontsevich--Zorich cocycle are very different from the case of Masur--Veech measures. Finally, we end these notes by constructing some examples of closed $SL(2,\mathbb{R})$-orbits such that the restriction of the Teichmüller flow to them has arbitrary small rate of exponential mixing, or, equivalently, the naturally associated unitary $SL(2,\mathbb{R})$-representation has arbitrarily small spectral gap (and in particular it has complementary series).
Citation: Giovanni Forni, Carlos Matheus. Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards. Journal of Modern Dynamics, 2014, 8 (3/4) : 271-436. doi: 10.3934/jmd.2014.8.271
References:
[1]

J. Athreya, Quantitative recurrence and large deviations for Teichmuller geodsic flow,, Geom. Dedicata, 119 (2006), 121. doi: 10.1007/s10711-006-9058-z.

[2]

J. Athreya and G. Forni, Deviation of ergodic averages for rational polygonal billiards,, Duke Math. J., 144 (2008), 285. doi: 10.1215/00127094-2008-037.

[3]

D. Aulicino, Teichmüller discs with completely degenerate Kontsevich-Zorich spectrum,, , (2012).

[4]

A. Avila and G. Forni, Weak mixing for interval exchange transformations and translations flows,, Ann. of Math. (2), 165 (2007), 637. doi: 10.4007/annals.2007.165.637.

[5]

A. Avila and S. Gouëzel, Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow,, Ann. of Math. (2), 178 (2010), 385. doi: 10.4007/annals.2013.178.2.1.

[6]

A. Avila, S. Gouëzel and J.-C. Yoccoz, Exponential mixing for the Teichmüller flow,, Pub. Math. Inst. Hautes Études Sci., 104 (2006), 143. doi: 10.1007/s10240-006-0001-5.

[7]

A. Avila, C. Matheus and J.-C. Yoccoz, On the Kontsevich-Zorich cocycle for McMullen's family of symmetric translation surfaces,, in preparation., ().

[8]

A. Avila and M. Viana, Simplicity of Lyapunov spectra: Proof of Zorich-Kontsevich conjecture,, Acta Math., 198 (2007), 1. doi: 10.1007/s11511-007-0012-1.

[9]

A. Avila and M. Viana, Extremal Lyapunov exponents: An invariance principle and applications,, Invent. Math., 181 (2010), 115. doi: 10.1007/s00222-010-0243-1.

[10]

M. Bainbridge, Euler characteristics of Teichmüller curves in genus two,, Geom. Topol., 11 (2007), 1887. doi: 10.2140/gt.2007.11.1887.

[11]

N. Bergeron, Le Spectre des Surfaces Hyperboliques,, Savoirs Actuels (Les Ulis), (2011).

[12]

J. Borwein and P. Borwein, Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity,, Reprint of the 1987 original, (1987).

[13]

K. Burns, H. Masur and A. Wilkinson, The Weil-Petersson geodesic flow is ergodic,, Ann. of Math. (2), 175 (2012), 835. doi: 10.4007/annals.2012.175.2.8.

[14]

A. Bufetov, Limit theorems for translations flows,, Ann. of Math. (2), 179 (2014), 431. doi: 10.4007/annals.2014.179.2.2.

[15]

K. Calta, Veech surfaces and complete periodicity in genus two,, J. Amer. Math. Soc., 17 (2004), 871. doi: 10.1090/S0894-0347-04-00461-8.

[16]

D. Chen and M. Möller, Quadratic differentials in low genus: Exceptional and non-varying strata,, Ann. Sci. Éc. Norm. Supér. (4), 47 (2014), 309.

[17]

Y. Cheung and A. Eskin, Unique ergodicity of translation flows,, in Partially Hyperbolic Dynamics, (2007), 213.

[18]

V. Delecroix, Cardinality of Rauzy classes,, Ann. Inst. Fourier (Grenoble), 63 (2013), 1651. doi: 10.5802/aif.2811.

[19]

P. Deligne, Un théorème de finitude pour la monodromie,, in Discrete Groups in Geometry and Analysis (New Haven, (1984), 1. doi: 10.1007/978-1-4899-6664-3_1.

[20]

V. Delecroix, P. Hubert and S. Lelièvre, Diffusion for the periodic wind-tree model,, , (2011), 1.

[21]

V. Delecroix and C. Matheus, Un contre-exemple à la réciproque du critère de Forni pour la positivité des exposants de Lyapunov du cocycle de Kontsevich-Zorich,, , (2011), 1.

[22]

, Disquisitiones Mathematicae,, , ().

[23]

J. Ellenberg and D. B. McReynolds, Arithmetic Veech sublattices of $SL(2,\mathbbZ)$,, Duke Math. J., 161 (2012), 415. doi: 10.1215/00127094-1507412.

[24]

A. Eskin, M. Kontsevich and A. Zorich, Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow,, Publ. Math. Inst. Hautes Études Sci., 120 (2014), 207. doi: 10.1007/s10240-013-0060-3.

[25]

A. Eskin, M. Kontsevich and A. Zorich, Lyapunov spectrum of square-tiled cyclic covers,, J. Mod. Dyn., 5 (2011), 319. doi: 10.3934/jmd.2011.5.319.

[26]

A. Eskin, H. Masur and A. Zorich, Moduli spaces of abelian differentials: The principal boundary, counting problems, and the Siegel-Veech constants,, Publ. Math. Inst. Hautes Études Sci., 97 (2003), 61. doi: 10.1007/s10240-003-0015-1.

[27]

A. Eskin and M. Mirzakhani, Invariant and stationary measures for the $SL(2,\mathbbR)$ action on moduli space,, , ().

[28]

A. Eskin and A. Okounkov, Asymptotics of number of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials,, Invent. Math., 145 (2001), 59. doi: 10.1007/s002220100142.

[29]

A. Eskin, A. Okounkov and R. Pandharipande, The theta characteristic of a branched covering,, Adv. Math., 217 (2008), 873. doi: 10.1016/j.aim.2006.08.001.

[30]

G. Forni, Deviations of ergodic averages for area-preserving flows on surfaces of higher genus,, Ann. of Math. (2), 155 (2002), 1. doi: 10.2307/3062150.

[31]

G. Forni, On the Lyapunov exponents of the Kontsevich-Zorich cocycle,, in Handbook of Dynamical Systems. Vol. 1B, (2006), 549. doi: 10.1016/S1874-575X(06)80033-0.

[32]

G. Forni, A geometric criterion for the nonuniform hyperbolicity of the Kontsevich-Zorich cocycle,, J. Mod. Dyn., 5 (2011), 355. doi: 10.3934/jmd.2011.5.355.

[33]

G. Forni, On the Brin prize work of Artur Avila in Teichmüller dynamics and interval-exchange transformations,, J. Mod. Dyn., 6 (2012), 139. doi: 10.3934/jmd.2012.6.139.

[34]

G. Forni and C. Matheus, An example of a Teichmüller disk in genus $4$ with degenerate Kontsevich-Zorich spectrum,, , (2008), 1.

[35]

G. Forni, C. Matheus and A. Zorich, Square-tiled cyclic covers,, J. Mod. Dyn., 5 (2011), 285. doi: 10.3934/jmd.2011.5.285.

[36]

G. Forni, C. Matheus and A. Zorich, Lyapunov spectrum of invariant subbundles of the Hodge bundle,, Ergodic Theory Dynam. Systems, 34 (2014), 353. doi: 10.1017/etds.2012.148.

[37]

G. Forni, C. Matheus and A. Zorich, Zero Lyapunov exponents of the Hodge bundle,, Comment. Math. Helv., 89 (2014), 489. doi: 10.4171/CMH/325.

[38]

R. Fox and R. Keshner, Concerning the transitive properties of geodesics on a rational polyhedron,, Duke Math. J., 2 (1936), 147. doi: 10.1215/S0012-7094-36-00213-2.

[39]

I. Gol'dsheĭd and G. Margulis, Lyapunov exponents of a product of random matrices (Russian),, Uspekhi Mat. Nauk, 44 (1989), 13. doi: 10.1070/RM1989v044n05ABEH002214.

[40]

Y. Guivarch and A. Raugi, Products of random matrices: Convergence theorems,, in Random Matrices and their Applications (Brunswick, (1984), 31. doi: 10.1090/conm/050/841080.

[41]

E. Gutkin and C. Judge, Affine mappings of translation surfaces: Geometry and arithmetic,, Duke Math. J., 103 (2000), 191. doi: 10.1215/S0012-7094-00-10321-3.

[42]

F. Herrlich and G. Schmithüsen, An extraordinary origami curve,, Math. Nachr., 281 (2008), 219. doi: 10.1002/mana.200510597.

[43]

J. Hubbard, Teichmüller Theory and Applications to Geometry, Topology, and Dynamics, Vol. 1,, Matrix Editions, (2006).

[44]

P. Hubert and T. Schmidt, An introduction to Veech surfaces,, in Handbook of Dynamical Systems. Vol. 1B, (2006), 501. doi: 10.1016/S1874-575X(06)80031-7.

[45]

P. Hubert and S. Lelièvre, Prime arithmetic Teichmüller discs in $\mathcalH(2)$,, Israel J. Math., 151 (2006), 281. doi: 10.1007/BF02777365.

[46]

E. Kani, Hurwitz spaces of genus 2 covers of an elliptic curve,, Collect. Math., 54 (2003), 1.

[47]

A. Katok, Interval exchange transformations and some special flows are not mixing,, Israel J. Math., 35 (1980), 301. doi: 10.1007/BF02760655.

[48]

A. Katok, Invariant measures of flows on orientable surfaces,, Dokl. Akad. Nauk SSSR, 211 (1973), 775.

[49]

A. Katok and A. Zemljakov, Topological transitivity of billiards in polygons,, Mat. Zametki, 18 (1975), 291.

[50]

M. Kontsevich, Lyapunov exponents and Hodge theory,, in The Mathematical Beauty of Physics (Saclay, (1996), 318.

[51]

M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities,, Invent. Math., 153 (2003), 631. doi: 10.1007/s00222-003-0303-x.

[52]

E. Lanneau, Connected components of the strata of the moduli spaces of quadratic differentials,, Ann. Sci. Éc. Norm. Supér. (4), 41 (2008), 1.

[53]

E. Lanneau and D. Nguyen, Teichmüller curves generated by Weierstrass Prym eigenforms in genus three and genus four,, , (2011), 1.

[54]

S. Marmi, P. Moussa and J.-C. Yoccoz, The cohomological equation for Roth-type interval exchange maps,, J. Amer. Math. Soc., 18 (2005), 823. doi: 10.1090/S0894-0347-05-00490-X.

[55]

H. Masur, Interval exchange transformations and measured foliations,, Ann. of Math. (2), 115 (1982), 169. doi: 10.2307/1971341.

[56]

H. Masur, Logarithmic law for geodesics in moduli space,, in Mapping Class Groups and Moduli Spaces of Riemann Surfaces (Göttingen, (1991), 229. doi: 10.1090/conm/150/01293.

[57]

H. Masur, Ergodic theory of translation surfaces,, in Handbook of Dynamical Systems. Vol. 1B, (2006), 527. doi: 10.1016/S1874-575X(06)80032-9.

[58]

H. Masur and S. Tabachnikov, Rational billiards and flat structures,, in Handbook of Dynamical Systems. Vol. 1A, (2002), 1015. doi: 10.1016/S1874-575X(02)80015-7.

[59]

H. Masur and J. Smillie, Quadratic differentials with prescribed singularities and pseudo-Anosov diffeomorphisms,, Comment. Math. Helv., 68 (1993), 289. doi: 10.1007/BF02565820.

[60]

C. Matheus and G. Weitze-Schmithüsen, Explicit Teichmüller curves with complemetary series,, , (2011), 1.

[61]

C. Matheus and J.-C. Yoccoz, The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis,, J. Mod. Dyn., 4 (2010), 453. doi: 10.3934/jmd.2010.4.453.

[62]

C. Matheus, M. Möller and J.-C. Yoccoz, A criterion for the simplicity of the Lyapunov spectrum of square-tiled surfaces,, Invent. Math., (2014). doi: 10.1007/s00222-014-0565-5.

[63]

C. Matheus, D. Zmiaikou and J.-C. Yoccoz, The action on homology of the affine group and the automorphism group of regular origamis,, in preparation., ().

[64]

M. Möller, Shimura and Teichmüller curves,, J. Mod. Dyn., 5 (2011), 1. doi: 10.3934/jmd.2011.5.1.

[65]

M. Möller, Prym covers, theta functions and Kobayashi curves in Hilbert modular surfaces,, , (2011), 1.

[66]

C. McMullen, Dynamics of $SL_2(\mathbbR)$ over moduli space in genus two,, Ann. of Math. (2), 165 (2007), 397. doi: 10.4007/annals.2007.165.397.

[67]

C. McMullen, Teichmüller curves in genus two: Discriminant and spin,, Math. Ann., 333 (2005), 87. doi: 10.1007/s00208-005-0666-y.

[68]

M. Ratner, The rate of mixing for geodesic and horocycle flows,, Ergodic Theory Dynam. Systems, 7 (1987), 267. doi: 10.1017/S0143385700004004.

[69]

M. Ratner, On Raghunathan's measure conjecture,, Ann. of Math. (2), 134 (1991), 545. doi: 10.2307/2944357.

[70]

G. Rauzy, Echanges d'intervalles et transformations induites,, Acta Arith., 34 (1979), 315.

[71]

S. Schwartzman, Asymptotic cycles,, Ann. of Math. (2), 66 (1957), 270. doi: 10.2307/1969999.

[72]

J. Smillie and B. Weiss, Characterizations of lattice surfaces,, Invent. Math., 180 (2010), 535. doi: 10.1007/s00222-010-0236-0.

[73]

R. Treviño, On the ergodicity of flat surfaces of finite area,, Geom. Funct. Anal., 24 (2014), 360. doi: 10.1007/s00039-014-0269-4.

[74]

W. Veech, Gauss measures for transformations on the space of interval exchange maps,, Ann. of Math.(2), 115 (1982), 201. doi: 10.2307/1971391.

[75]

W. Veech, The metric theory of interval exchange transformations. I. Generic spectral properties,, Amer. J. Math., 106 (1984), 1331. doi: 10.2307/2374396.

[76]

W. Veech, Teichmüller geodesic flow,, Ann. of Math. (2), 124 (1986), 441. doi: 10.2307/2007091.

[77]

W. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards,, Invent. Math., 97 (1989), 553. doi: 10.1007/BF01388890.

[78]

W. Veech, Moduli spaces of quadratic differentials,, J. Analyse Math., 55 (1990), 117. doi: 10.1007/BF02789200.

[79]

J.-C. Yoccoz, Interval exchange maps and translation surfaces,, in Homogeneous Flows, (2010), 1.

[80]

D. Zmiaikou, Origamis and Permutation Groups,, Ph.D. thesis, (2011).

[81]

A. Zorich, Flat surfaces,, in Frontiers in Number Theory, (2006), 437.

[82]

A. Zorich, Asymptotic flag of an orientable measured foliation on a surface,, in Geometric Study of Foliations (Tokyo, (1993), 479.

show all references

References:
[1]

J. Athreya, Quantitative recurrence and large deviations for Teichmuller geodsic flow,, Geom. Dedicata, 119 (2006), 121. doi: 10.1007/s10711-006-9058-z.

[2]

J. Athreya and G. Forni, Deviation of ergodic averages for rational polygonal billiards,, Duke Math. J., 144 (2008), 285. doi: 10.1215/00127094-2008-037.

[3]

D. Aulicino, Teichmüller discs with completely degenerate Kontsevich-Zorich spectrum,, , (2012).

[4]

A. Avila and G. Forni, Weak mixing for interval exchange transformations and translations flows,, Ann. of Math. (2), 165 (2007), 637. doi: 10.4007/annals.2007.165.637.

[5]

A. Avila and S. Gouëzel, Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow,, Ann. of Math. (2), 178 (2010), 385. doi: 10.4007/annals.2013.178.2.1.

[6]

A. Avila, S. Gouëzel and J.-C. Yoccoz, Exponential mixing for the Teichmüller flow,, Pub. Math. Inst. Hautes Études Sci., 104 (2006), 143. doi: 10.1007/s10240-006-0001-5.

[7]

A. Avila, C. Matheus and J.-C. Yoccoz, On the Kontsevich-Zorich cocycle for McMullen's family of symmetric translation surfaces,, in preparation., ().

[8]

A. Avila and M. Viana, Simplicity of Lyapunov spectra: Proof of Zorich-Kontsevich conjecture,, Acta Math., 198 (2007), 1. doi: 10.1007/s11511-007-0012-1.

[9]

A. Avila and M. Viana, Extremal Lyapunov exponents: An invariance principle and applications,, Invent. Math., 181 (2010), 115. doi: 10.1007/s00222-010-0243-1.

[10]

M. Bainbridge, Euler characteristics of Teichmüller curves in genus two,, Geom. Topol., 11 (2007), 1887. doi: 10.2140/gt.2007.11.1887.

[11]

N. Bergeron, Le Spectre des Surfaces Hyperboliques,, Savoirs Actuels (Les Ulis), (2011).

[12]

J. Borwein and P. Borwein, Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity,, Reprint of the 1987 original, (1987).

[13]

K. Burns, H. Masur and A. Wilkinson, The Weil-Petersson geodesic flow is ergodic,, Ann. of Math. (2), 175 (2012), 835. doi: 10.4007/annals.2012.175.2.8.

[14]

A. Bufetov, Limit theorems for translations flows,, Ann. of Math. (2), 179 (2014), 431. doi: 10.4007/annals.2014.179.2.2.

[15]

K. Calta, Veech surfaces and complete periodicity in genus two,, J. Amer. Math. Soc., 17 (2004), 871. doi: 10.1090/S0894-0347-04-00461-8.

[16]

D. Chen and M. Möller, Quadratic differentials in low genus: Exceptional and non-varying strata,, Ann. Sci. Éc. Norm. Supér. (4), 47 (2014), 309.

[17]

Y. Cheung and A. Eskin, Unique ergodicity of translation flows,, in Partially Hyperbolic Dynamics, (2007), 213.

[18]

V. Delecroix, Cardinality of Rauzy classes,, Ann. Inst. Fourier (Grenoble), 63 (2013), 1651. doi: 10.5802/aif.2811.

[19]

P. Deligne, Un théorème de finitude pour la monodromie,, in Discrete Groups in Geometry and Analysis (New Haven, (1984), 1. doi: 10.1007/978-1-4899-6664-3_1.

[20]

V. Delecroix, P. Hubert and S. Lelièvre, Diffusion for the periodic wind-tree model,, , (2011), 1.

[21]

V. Delecroix and C. Matheus, Un contre-exemple à la réciproque du critère de Forni pour la positivité des exposants de Lyapunov du cocycle de Kontsevich-Zorich,, , (2011), 1.

[22]

, Disquisitiones Mathematicae,, , ().

[23]

J. Ellenberg and D. B. McReynolds, Arithmetic Veech sublattices of $SL(2,\mathbbZ)$,, Duke Math. J., 161 (2012), 415. doi: 10.1215/00127094-1507412.

[24]

A. Eskin, M. Kontsevich and A. Zorich, Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow,, Publ. Math. Inst. Hautes Études Sci., 120 (2014), 207. doi: 10.1007/s10240-013-0060-3.

[25]

A. Eskin, M. Kontsevich and A. Zorich, Lyapunov spectrum of square-tiled cyclic covers,, J. Mod. Dyn., 5 (2011), 319. doi: 10.3934/jmd.2011.5.319.

[26]

A. Eskin, H. Masur and A. Zorich, Moduli spaces of abelian differentials: The principal boundary, counting problems, and the Siegel-Veech constants,, Publ. Math. Inst. Hautes Études Sci., 97 (2003), 61. doi: 10.1007/s10240-003-0015-1.

[27]

A. Eskin and M. Mirzakhani, Invariant and stationary measures for the $SL(2,\mathbbR)$ action on moduli space,, , ().

[28]

A. Eskin and A. Okounkov, Asymptotics of number of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials,, Invent. Math., 145 (2001), 59. doi: 10.1007/s002220100142.

[29]

A. Eskin, A. Okounkov and R. Pandharipande, The theta characteristic of a branched covering,, Adv. Math., 217 (2008), 873. doi: 10.1016/j.aim.2006.08.001.

[30]

G. Forni, Deviations of ergodic averages for area-preserving flows on surfaces of higher genus,, Ann. of Math. (2), 155 (2002), 1. doi: 10.2307/3062150.

[31]

G. Forni, On the Lyapunov exponents of the Kontsevich-Zorich cocycle,, in Handbook of Dynamical Systems. Vol. 1B, (2006), 549. doi: 10.1016/S1874-575X(06)80033-0.

[32]

G. Forni, A geometric criterion for the nonuniform hyperbolicity of the Kontsevich-Zorich cocycle,, J. Mod. Dyn., 5 (2011), 355. doi: 10.3934/jmd.2011.5.355.

[33]

G. Forni, On the Brin prize work of Artur Avila in Teichmüller dynamics and interval-exchange transformations,, J. Mod. Dyn., 6 (2012), 139. doi: 10.3934/jmd.2012.6.139.

[34]

G. Forni and C. Matheus, An example of a Teichmüller disk in genus $4$ with degenerate Kontsevich-Zorich spectrum,, , (2008), 1.

[35]

G. Forni, C. Matheus and A. Zorich, Square-tiled cyclic covers,, J. Mod. Dyn., 5 (2011), 285. doi: 10.3934/jmd.2011.5.285.

[36]

G. Forni, C. Matheus and A. Zorich, Lyapunov spectrum of invariant subbundles of the Hodge bundle,, Ergodic Theory Dynam. Systems, 34 (2014), 353. doi: 10.1017/etds.2012.148.

[37]

G. Forni, C. Matheus and A. Zorich, Zero Lyapunov exponents of the Hodge bundle,, Comment. Math. Helv., 89 (2014), 489. doi: 10.4171/CMH/325.

[38]

R. Fox and R. Keshner, Concerning the transitive properties of geodesics on a rational polyhedron,, Duke Math. J., 2 (1936), 147. doi: 10.1215/S0012-7094-36-00213-2.

[39]

I. Gol'dsheĭd and G. Margulis, Lyapunov exponents of a product of random matrices (Russian),, Uspekhi Mat. Nauk, 44 (1989), 13. doi: 10.1070/RM1989v044n05ABEH002214.

[40]

Y. Guivarch and A. Raugi, Products of random matrices: Convergence theorems,, in Random Matrices and their Applications (Brunswick, (1984), 31. doi: 10.1090/conm/050/841080.

[41]

E. Gutkin and C. Judge, Affine mappings of translation surfaces: Geometry and arithmetic,, Duke Math. J., 103 (2000), 191. doi: 10.1215/S0012-7094-00-10321-3.

[42]

F. Herrlich and G. Schmithüsen, An extraordinary origami curve,, Math. Nachr., 281 (2008), 219. doi: 10.1002/mana.200510597.

[43]

J. Hubbard, Teichmüller Theory and Applications to Geometry, Topology, and Dynamics, Vol. 1,, Matrix Editions, (2006).

[44]

P. Hubert and T. Schmidt, An introduction to Veech surfaces,, in Handbook of Dynamical Systems. Vol. 1B, (2006), 501. doi: 10.1016/S1874-575X(06)80031-7.

[45]

P. Hubert and S. Lelièvre, Prime arithmetic Teichmüller discs in $\mathcalH(2)$,, Israel J. Math., 151 (2006), 281. doi: 10.1007/BF02777365.

[46]

E. Kani, Hurwitz spaces of genus 2 covers of an elliptic curve,, Collect. Math., 54 (2003), 1.

[47]

A. Katok, Interval exchange transformations and some special flows are not mixing,, Israel J. Math., 35 (1980), 301. doi: 10.1007/BF02760655.

[48]

A. Katok, Invariant measures of flows on orientable surfaces,, Dokl. Akad. Nauk SSSR, 211 (1973), 775.

[49]

A. Katok and A. Zemljakov, Topological transitivity of billiards in polygons,, Mat. Zametki, 18 (1975), 291.

[50]

M. Kontsevich, Lyapunov exponents and Hodge theory,, in The Mathematical Beauty of Physics (Saclay, (1996), 318.

[51]

M. Kontsevich and A. Zorich, Connected components of the moduli spaces of Abelian differentials with prescribed singularities,, Invent. Math., 153 (2003), 631. doi: 10.1007/s00222-003-0303-x.

[52]

E. Lanneau, Connected components of the strata of the moduli spaces of quadratic differentials,, Ann. Sci. Éc. Norm. Supér. (4), 41 (2008), 1.

[53]

E. Lanneau and D. Nguyen, Teichmüller curves generated by Weierstrass Prym eigenforms in genus three and genus four,, , (2011), 1.

[54]

S. Marmi, P. Moussa and J.-C. Yoccoz, The cohomological equation for Roth-type interval exchange maps,, J. Amer. Math. Soc., 18 (2005), 823. doi: 10.1090/S0894-0347-05-00490-X.

[55]

H. Masur, Interval exchange transformations and measured foliations,, Ann. of Math. (2), 115 (1982), 169. doi: 10.2307/1971341.

[56]

H. Masur, Logarithmic law for geodesics in moduli space,, in Mapping Class Groups and Moduli Spaces of Riemann Surfaces (Göttingen, (1991), 229. doi: 10.1090/conm/150/01293.

[57]

H. Masur, Ergodic theory of translation surfaces,, in Handbook of Dynamical Systems. Vol. 1B, (2006), 527. doi: 10.1016/S1874-575X(06)80032-9.

[58]

H. Masur and S. Tabachnikov, Rational billiards and flat structures,, in Handbook of Dynamical Systems. Vol. 1A, (2002), 1015. doi: 10.1016/S1874-575X(02)80015-7.

[59]

H. Masur and J. Smillie, Quadratic differentials with prescribed singularities and pseudo-Anosov diffeomorphisms,, Comment. Math. Helv., 68 (1993), 289. doi: 10.1007/BF02565820.

[60]

C. Matheus and G. Weitze-Schmithüsen, Explicit Teichmüller curves with complemetary series,, , (2011), 1.

[61]

C. Matheus and J.-C. Yoccoz, The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis,, J. Mod. Dyn., 4 (2010), 453. doi: 10.3934/jmd.2010.4.453.

[62]

C. Matheus, M. Möller and J.-C. Yoccoz, A criterion for the simplicity of the Lyapunov spectrum of square-tiled surfaces,, Invent. Math., (2014). doi: 10.1007/s00222-014-0565-5.

[63]

C. Matheus, D. Zmiaikou and J.-C. Yoccoz, The action on homology of the affine group and the automorphism group of regular origamis,, in preparation., ().

[64]

M. Möller, Shimura and Teichmüller curves,, J. Mod. Dyn., 5 (2011), 1. doi: 10.3934/jmd.2011.5.1.

[65]

M. Möller, Prym covers, theta functions and Kobayashi curves in Hilbert modular surfaces,, , (2011), 1.

[66]

C. McMullen, Dynamics of $SL_2(\mathbbR)$ over moduli space in genus two,, Ann. of Math. (2), 165 (2007), 397. doi: 10.4007/annals.2007.165.397.

[67]

C. McMullen, Teichmüller curves in genus two: Discriminant and spin,, Math. Ann., 333 (2005), 87. doi: 10.1007/s00208-005-0666-y.

[68]

M. Ratner, The rate of mixing for geodesic and horocycle flows,, Ergodic Theory Dynam. Systems, 7 (1987), 267. doi: 10.1017/S0143385700004004.

[69]

M. Ratner, On Raghunathan's measure conjecture,, Ann. of Math. (2), 134 (1991), 545. doi: 10.2307/2944357.

[70]

G. Rauzy, Echanges d'intervalles et transformations induites,, Acta Arith., 34 (1979), 315.

[71]

S. Schwartzman, Asymptotic cycles,, Ann. of Math. (2), 66 (1957), 270. doi: 10.2307/1969999.

[72]

J. Smillie and B. Weiss, Characterizations of lattice surfaces,, Invent. Math., 180 (2010), 535. doi: 10.1007/s00222-010-0236-0.

[73]

R. Treviño, On the ergodicity of flat surfaces of finite area,, Geom. Funct. Anal., 24 (2014), 360. doi: 10.1007/s00039-014-0269-4.

[74]

W. Veech, Gauss measures for transformations on the space of interval exchange maps,, Ann. of Math.(2), 115 (1982), 201. doi: 10.2307/1971391.

[75]

W. Veech, The metric theory of interval exchange transformations. I. Generic spectral properties,, Amer. J. Math., 106 (1984), 1331. doi: 10.2307/2374396.

[76]

W. Veech, Teichmüller geodesic flow,, Ann. of Math. (2), 124 (1986), 441. doi: 10.2307/2007091.

[77]

W. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards,, Invent. Math., 97 (1989), 553. doi: 10.1007/BF01388890.

[78]

W. Veech, Moduli spaces of quadratic differentials,, J. Analyse Math., 55 (1990), 117. doi: 10.1007/BF02789200.

[79]

J.-C. Yoccoz, Interval exchange maps and translation surfaces,, in Homogeneous Flows, (2010), 1.

[80]

D. Zmiaikou, Origamis and Permutation Groups,, Ph.D. thesis, (2011).

[81]

A. Zorich, Flat surfaces,, in Frontiers in Number Theory, (2006), 437.

[82]

A. Zorich, Asymptotic flag of an orientable measured foliation on a surface,, in Geometric Study of Foliations (Tokyo, (1993), 479.

[1]

Jonathan Chaika, Yitwah Cheung, Howard Masur. Winning games for bounded geodesics in moduli spaces of quadratic differentials. Journal of Modern Dynamics, 2013, 7 (3) : 395-427. doi: 10.3934/jmd.2013.7.395

[2]

Dawei Chen. Strata of abelian differentials and the Teichmüller dynamics. Journal of Modern Dynamics, 2013, 7 (1) : 135-152. doi: 10.3934/jmd.2013.7.135

[3]

Corentin Boissy. Classification of Rauzy classes in the moduli space of Abelian and quadratic differentials. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3433-3457. doi: 10.3934/dcds.2012.32.3433

[4]

Fei Yu, Kang Zuo. Weierstrass filtration on Teichmüller curves and Lyapunov exponents. Journal of Modern Dynamics, 2013, 7 (2) : 209-237. doi: 10.3934/jmd.2013.7.209

[5]

Giovanni Forni. A geometric criterion for the nonuniform hyperbolicity of the Kontsevich--Zorich cocycle. Journal of Modern Dynamics, 2011, 5 (2) : 355-395. doi: 10.3934/jmd.2011.5.355

[6]

Artur Avila. Density of positive Lyapunov exponents for quasiperiodic SL(2, R)-cocycles in arbitrary dimension. Journal of Modern Dynamics, 2009, 3 (4) : 631-636. doi: 10.3934/jmd.2009.3.631

[7]

Lisa C. Jeffrey and Frances C. Kirwan. Intersection pairings in moduli spaces of holomorphic bundles on a Riemann surface. Electronic Research Announcements, 1995, 1: 57-71.

[8]

Guizhen Cui, Yunping Jiang, Anthony Quas. Scaling functions and Gibbs measures and Teichmüller spaces of circle endomorphisms . Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 535-552. doi: 10.3934/dcds.1999.5.535

[9]

Alex Wright. Schwarz triangle mappings and Teichmüller curves: Abelian square-tiled surfaces. Journal of Modern Dynamics, 2012, 6 (3) : 405-426. doi: 10.3934/jmd.2012.6.405

[10]

Ursula Hamenstädt. Bowen's construction for the Teichmüller flow. Journal of Modern Dynamics, 2013, 7 (4) : 489-526. doi: 10.3934/jmd.2013.7.489

[11]

Ursula Hamenstädt. Dynamics of the Teichmüller flow on compact invariant sets. Journal of Modern Dynamics, 2010, 4 (2) : 393-418. doi: 10.3934/jmd.2010.4.393

[12]

Christopher Kumar Anand. Unitons and their moduli. Electronic Research Announcements, 1996, 2: 7-16.

[13]

Matteo Costantini, André Kappes. The equation of the Kenyon-Smillie (2, 3, 4)-Teichmüller curve. Journal of Modern Dynamics, 2017, 11: 17-41. doi: 10.3934/jmd.2017002

[14]

V. Balaji, P. Barik, D. S. Nagaraj. On degenerations of moduli of Hitchin pairs. Electronic Research Announcements, 2013, 20: 103-108. doi: 10.3934/era.2013.20.105

[15]

Martin Möller. Shimura and Teichmüller curves. Journal of Modern Dynamics, 2011, 5 (1) : 1-32. doi: 10.3934/jmd.2011.5.1

[16]

Bassam Fayad, Raphaël Krikorian. Rigidity results for quasiperiodic SL(2, R)-cocycles. Journal of Modern Dynamics, 2009, 3 (4) : 479-510. doi: 10.3934/jmd.2009.3.479

[17]

Alex Eskin, Maryam Mirzakhani. Counting closed geodesics in moduli space. Journal of Modern Dynamics, 2011, 5 (1) : 71-105. doi: 10.3934/jmd.2011.5.71

[18]

P. Kaplický, Dalibor Pražák. Lyapunov exponents and the dimension of the attractor for 2d shear-thinning incompressible flow. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 961-974. doi: 10.3934/dcds.2008.20.961

[19]

Jon Fickenscher. A combinatorial proof of the Kontsevich-Zorich-Boissy classification of Rauzy classes. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1983-2025. doi: 10.3934/dcds.2016.36.1983

[20]

Julie Déserti. Jonquières maps and $SL(2;\mathbb{C})$-cocycles. Journal of Modern Dynamics, 2016, 10: 23-32. doi: 10.3934/jmd.2016.10.23

2016 Impact Factor: 0.706

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]