2015, 35(10): 4955-4986. doi: 10.3934/dcds.2015.35.4955

Regions of stability for a linear differential equation with two rationally dependent delays

1. 

Department of Mathematics and Statistics, Nonlinear Dynamical Systems Group, Computational Sciences Research Center, San Diego State University, San Diego, CA 92182-7720, United States

2. 

Department of Mathematics, Grossmont College, El Cajon, CA 92020, United States

Received  July 2013 Revised  January 2015 Published  April 2015

Stability analysis is performed for a linear differential equation with two delays. Geometric arguments show that when the two delays are rationally dependent, then the region of stability increases. When the ratio has the form $1/n$, this study finds the asymptotic shape and size of the stability region. For example, a delay ratio of $1/3$ asymptotically produces a stability region about 44.3% larger than any nearby delay ratios, showing extreme sensitivity in the delays. The study provides a systematic and geometric approach to finding the eigenvalues on the boundary of stability for this delay differential equation. A nonlinear model with two delays illustrates how our methods can be applied.
Citation: Joseph M. Mahaffy, Timothy C. Busken. Regions of stability for a linear differential equation with two rationally dependent delays. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4955-4986. doi: 10.3934/dcds.2015.35.4955
References:
[1]

J. Bélair, Stability of a differential-delay equation with two time lags,, in Oscillations, (1987), 305.

[2]

J. Bélair and M. Mackey, A model for the regulation of mammalian platelet production,, Ann. N. Y. Acad. Sci., 504 (1987), 280. doi: 10.1111/j.1749-6632.1987.tb48740.x.

[3]

J. Bélair and M. Mackey, Consumer memory and price fluctuations in commodity markets: An integrodifferential model,, J. Dyn. and Diff. Eqns., 1 (1989), 299. doi: 10.1007/BF01053930.

[4]

J. Bélair, M. C. Mackey and J. M. Mahaffy, Age-structured and two delay models for erythropoiesis,, Math. Biosci., 128 (1995), 317. doi: 10.1016/0025-5564(94)00078-E.

[5]

J. Bélair and S. A. Campbell, Stability and bifurcations of equilibria in a multiple-delayed differential equation,, SIAM J. Appl. Math., 54 (1994), 1402. doi: 10.1137/S0036139993248853.

[6]

J. Bélair, S. A. Campbell and P. v. d. Driessche, Frustration, stability, and delay-induced oscillations in a neural network model,, SIAM Journal on Applied Mathematics, 56 (1996), 245. doi: 10.1137/S0036139994274526.

[7]

R. Bellman and K. L. Cooke, Differential-Difference Equations,, Lectures in Applied Mathematics, (1963).

[8]

F. G. Boese, The delay-independent stability behaviour of a first order differential-difference equation with two constant lags,, preprint, (1993).

[9]

F. G. Boese, A new representation of a stability result of N. D. Hayes,, Z. Angew. Math. Mech., 73 (1993), 117. doi: 10.1002/zamm.19930730215.

[10]

F. G. Boese, Stability in a special class of retarded difference-differential equations with interval-valued parameters,, Journal of Mathematical Analysis and Applications, 181 (1994), 227. doi: 10.1006/jmaa.1994.1017.

[11]

D. M. Bortz, Eigenvalues for two-lag linear delay differential equations,, submitted, (2012).

[12]

R. D. Braddock and P. van den Driessche, A population model with two time delays,, in Quantitative Population Dynamics (eds. D. G. Chapman and V. F. Gallucci), (1981).

[13]

T. C. Busken, On the Asymptotic Stability of the Zero Solution for a Linear Differential Equation with Two Delays,, Master's Thesis, (2012).

[14]

S. A. Campbell and J. Bélair, Analytical and symbolically-assisted investigation of Hopf bifurcations in delay-differential equations,, Proceedings of the G. J. Butler Workshop in Mathematical Biology (Waterloo, 3 (1995), 137.

[15]

K. L. Cooke and J. A. Yorke, Some equations modelling growth processes and gonorrhea epidemics,, Math. Biosci., 16 (1973), 75. doi: 10.1016/0025-5564(73)90046-1.

[16]

L. E. El'sgol'ts and S. Norkin, Introduction to the Theory of Differential Equations with Deviating Arguments,, Academic Press, (1977).

[17]

T. Elsken, The region of (in)stability of a 2-delay equation is connected,, J. Math. Anal. Appl., 261 (2001), 497. doi: 10.1006/jmaa.2001.7536.

[18]

C. Guzelis and L. O. Chua, Stability analysis of generalized cellular neural networks,, International Journal of Circuit Theory and Applications, 21 (1993), 1. doi: 10.1002/cta.4490210102.

[19]

J. Hale, E. Infante and P. Tsen, Stability in linear delay equations,, J. Math. Anal. Appl., 105 (1985), 533. doi: 10.1016/0022-247X(85)90068-X.

[20]

J. K. Hale, Nonlinear oscillations in equations with delays,, in Nonlinear Oscillations in Biology (Proc. Tenth Summer Sem. Appl. Math., (1978), 157.

[21]

J. K. Hale and W. Huang, Global geometry of the stable regions for two delay differential equations,, J. Math. Anal. Appl., 178 (1993), 344. doi: 10.1006/jmaa.1993.1312.

[22]

J. K. Hale and S. M. Tanaka, Square and pulse waves with two delays,, Journal of Dynamics and Differential Equations, 12 (2000), 1. doi: 10.1023/A:1009052718531.

[23]

G. Haller and G. Stépán, Codimension two bifurcation in an approximate model for delayed robot control,, in Bifurcation and Chaos: Analysis, (1990), 155.

[24]

N. Hayes, Roots of the transcendental equation associated with a certain differential difference equation,, J. London Math. Soc., 25 (1950), 226.

[25]

T. D. Howroyd and A. M. Russell, Cournot oligopoly models with time lags,, J. Math. Econ., 13 (1984), 97. doi: 10.1016/0304-4068(84)90009-0.

[26]

, E. F. Infante,, Personal Communication, (1975).

[27]

I. S. Levitskaya, Stability domain of a linear differential equation with two delays,, Comput. Math. Appl., 51 (2006), 153. doi: 10.1016/j.camwa.2005.05.011.

[28]

X. Li, S. Ruan and J. Wei, Stability and bifurcation in delay-differential equations with two delays,, Journal of Mathematical Analysis and Applications, 236 (1999), 254. doi: 10.1006/jmaa.1999.6418.

[29]

N. MacDonald, Cyclical neutropenia; Models with two cell types and two time lags,, in Biomathematics and Cell Kinetics (eds. A. J. Valleron and P. D. M. Macdonald), (1979), 287.

[30]

N. MacDonald, An activation-inhibition model of cyclic granulopoiesis in chronic granulocytic leukemia,, Math. Biosci., 54 (1980), 61. doi: 10.1016/0025-5564(81)90076-6.

[31]

M. C. Mackey, Commodity price fluctuations: Price dependent delays and nonlinearities as explanatory factors,, J. Econ. Theory, 48 (1989), 497. doi: 10.1016/0022-0531(89)90039-2.

[32]

J. M. Mahaffy, P. J. Zak and K. M. Joiner, A Three Parameter Stability Analysis for a Linear Differential Equation with Two Delays,, Technical report, (1993).

[33]

J. M. Mahaffy, P. J. Zak and K. M. Joiner, A geometric analysis of stability regions for a linear differential equation with two delays,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), 779. doi: 10.1142/S0218127495000570.

[34]

M. Mizuno and K. Ikeda, An unstable mode selection rule: Frustrated optical instability due to two competing boundary conditions,, Physica D, 36 (1989), 327. doi: 10.1016/0167-2789(89)90088-2.

[35]

S. Mohamad and K. Gopalsamy, Exponential stability of continuous-time and discrete-time cellular neural networks with delays,, Applied Mathematics and Computation, 135 (2003), 17. doi: 10.1016/S0096-3003(01)00299-5.

[36]

W. W. Murdoch, R. M. Nisbet, S. P. Blythe, W. S. C. Gurney and J. D. Reeve, An invulnerable age class and stability in delay-differential parasitoid-host models,, American Naturalist, 129 (1987), 263. doi: 10.1086/284634.

[37]

R. D. Nussbaum, A Hopf global bifurcation theorem for retarded functional differential equations,, Trans. Amer. Math. Soc., 238 (1978), 139. doi: 10.1090/S0002-9947-1978-0482913-0.

[38]

M. Piotrowska, A remark on the ode with two discrete delays,, Journal of Mathematical Analysis and Applications, 329 (2007), 664. doi: 10.1016/j.jmaa.2006.06.078.

[39]

C. G. Ragazzo and C. P. Malta, Singularity structure of the Hopf bifurcation surface of a differential equation with two delays,, Journal of Dynamics and Differential Equations, 4 (1992), 617. doi: 10.1007/BF01048262.

[40]

J. Ruiz-Claeyssen, Effects of delays on functional differential equations,, J. Diff. Eq., 20 (1976), 404. doi: 10.1016/0022-0396(76)90117-0.

[41]

S. Sakata, Asymptotic stability for a linear system of differential-difference equations,, Funkcial. Ekvac., 41 (1998), 435.

[42]

R. T. Wilsterman, An Analytic and Geometric Approach for Examining the Stability of Linear Differential Equations with Two Delays,, Master's Thesis, (2013).

[43]

T. Yoneyama and J. Sugie, On the stability region of differential equations with two delays,, Funkcial. Ekvac., 31 (1988), 233.

[44]

E. Zaron, The Delay Differential Equation: $x'(t) = -ax(t) + bx(t-\tau_1) + cx(t-\tau_2)$,, Technical report, (1987).

show all references

References:
[1]

J. Bélair, Stability of a differential-delay equation with two time lags,, in Oscillations, (1987), 305.

[2]

J. Bélair and M. Mackey, A model for the regulation of mammalian platelet production,, Ann. N. Y. Acad. Sci., 504 (1987), 280. doi: 10.1111/j.1749-6632.1987.tb48740.x.

[3]

J. Bélair and M. Mackey, Consumer memory and price fluctuations in commodity markets: An integrodifferential model,, J. Dyn. and Diff. Eqns., 1 (1989), 299. doi: 10.1007/BF01053930.

[4]

J. Bélair, M. C. Mackey and J. M. Mahaffy, Age-structured and two delay models for erythropoiesis,, Math. Biosci., 128 (1995), 317. doi: 10.1016/0025-5564(94)00078-E.

[5]

J. Bélair and S. A. Campbell, Stability and bifurcations of equilibria in a multiple-delayed differential equation,, SIAM J. Appl. Math., 54 (1994), 1402. doi: 10.1137/S0036139993248853.

[6]

J. Bélair, S. A. Campbell and P. v. d. Driessche, Frustration, stability, and delay-induced oscillations in a neural network model,, SIAM Journal on Applied Mathematics, 56 (1996), 245. doi: 10.1137/S0036139994274526.

[7]

R. Bellman and K. L. Cooke, Differential-Difference Equations,, Lectures in Applied Mathematics, (1963).

[8]

F. G. Boese, The delay-independent stability behaviour of a first order differential-difference equation with two constant lags,, preprint, (1993).

[9]

F. G. Boese, A new representation of a stability result of N. D. Hayes,, Z. Angew. Math. Mech., 73 (1993), 117. doi: 10.1002/zamm.19930730215.

[10]

F. G. Boese, Stability in a special class of retarded difference-differential equations with interval-valued parameters,, Journal of Mathematical Analysis and Applications, 181 (1994), 227. doi: 10.1006/jmaa.1994.1017.

[11]

D. M. Bortz, Eigenvalues for two-lag linear delay differential equations,, submitted, (2012).

[12]

R. D. Braddock and P. van den Driessche, A population model with two time delays,, in Quantitative Population Dynamics (eds. D. G. Chapman and V. F. Gallucci), (1981).

[13]

T. C. Busken, On the Asymptotic Stability of the Zero Solution for a Linear Differential Equation with Two Delays,, Master's Thesis, (2012).

[14]

S. A. Campbell and J. Bélair, Analytical and symbolically-assisted investigation of Hopf bifurcations in delay-differential equations,, Proceedings of the G. J. Butler Workshop in Mathematical Biology (Waterloo, 3 (1995), 137.

[15]

K. L. Cooke and J. A. Yorke, Some equations modelling growth processes and gonorrhea epidemics,, Math. Biosci., 16 (1973), 75. doi: 10.1016/0025-5564(73)90046-1.

[16]

L. E. El'sgol'ts and S. Norkin, Introduction to the Theory of Differential Equations with Deviating Arguments,, Academic Press, (1977).

[17]

T. Elsken, The region of (in)stability of a 2-delay equation is connected,, J. Math. Anal. Appl., 261 (2001), 497. doi: 10.1006/jmaa.2001.7536.

[18]

C. Guzelis and L. O. Chua, Stability analysis of generalized cellular neural networks,, International Journal of Circuit Theory and Applications, 21 (1993), 1. doi: 10.1002/cta.4490210102.

[19]

J. Hale, E. Infante and P. Tsen, Stability in linear delay equations,, J. Math. Anal. Appl., 105 (1985), 533. doi: 10.1016/0022-247X(85)90068-X.

[20]

J. K. Hale, Nonlinear oscillations in equations with delays,, in Nonlinear Oscillations in Biology (Proc. Tenth Summer Sem. Appl. Math., (1978), 157.

[21]

J. K. Hale and W. Huang, Global geometry of the stable regions for two delay differential equations,, J. Math. Anal. Appl., 178 (1993), 344. doi: 10.1006/jmaa.1993.1312.

[22]

J. K. Hale and S. M. Tanaka, Square and pulse waves with two delays,, Journal of Dynamics and Differential Equations, 12 (2000), 1. doi: 10.1023/A:1009052718531.

[23]

G. Haller and G. Stépán, Codimension two bifurcation in an approximate model for delayed robot control,, in Bifurcation and Chaos: Analysis, (1990), 155.

[24]

N. Hayes, Roots of the transcendental equation associated with a certain differential difference equation,, J. London Math. Soc., 25 (1950), 226.

[25]

T. D. Howroyd and A. M. Russell, Cournot oligopoly models with time lags,, J. Math. Econ., 13 (1984), 97. doi: 10.1016/0304-4068(84)90009-0.

[26]

, E. F. Infante,, Personal Communication, (1975).

[27]

I. S. Levitskaya, Stability domain of a linear differential equation with two delays,, Comput. Math. Appl., 51 (2006), 153. doi: 10.1016/j.camwa.2005.05.011.

[28]

X. Li, S. Ruan and J. Wei, Stability and bifurcation in delay-differential equations with two delays,, Journal of Mathematical Analysis and Applications, 236 (1999), 254. doi: 10.1006/jmaa.1999.6418.

[29]

N. MacDonald, Cyclical neutropenia; Models with two cell types and two time lags,, in Biomathematics and Cell Kinetics (eds. A. J. Valleron and P. D. M. Macdonald), (1979), 287.

[30]

N. MacDonald, An activation-inhibition model of cyclic granulopoiesis in chronic granulocytic leukemia,, Math. Biosci., 54 (1980), 61. doi: 10.1016/0025-5564(81)90076-6.

[31]

M. C. Mackey, Commodity price fluctuations: Price dependent delays and nonlinearities as explanatory factors,, J. Econ. Theory, 48 (1989), 497. doi: 10.1016/0022-0531(89)90039-2.

[32]

J. M. Mahaffy, P. J. Zak and K. M. Joiner, A Three Parameter Stability Analysis for a Linear Differential Equation with Two Delays,, Technical report, (1993).

[33]

J. M. Mahaffy, P. J. Zak and K. M. Joiner, A geometric analysis of stability regions for a linear differential equation with two delays,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 5 (1995), 779. doi: 10.1142/S0218127495000570.

[34]

M. Mizuno and K. Ikeda, An unstable mode selection rule: Frustrated optical instability due to two competing boundary conditions,, Physica D, 36 (1989), 327. doi: 10.1016/0167-2789(89)90088-2.

[35]

S. Mohamad and K. Gopalsamy, Exponential stability of continuous-time and discrete-time cellular neural networks with delays,, Applied Mathematics and Computation, 135 (2003), 17. doi: 10.1016/S0096-3003(01)00299-5.

[36]

W. W. Murdoch, R. M. Nisbet, S. P. Blythe, W. S. C. Gurney and J. D. Reeve, An invulnerable age class and stability in delay-differential parasitoid-host models,, American Naturalist, 129 (1987), 263. doi: 10.1086/284634.

[37]

R. D. Nussbaum, A Hopf global bifurcation theorem for retarded functional differential equations,, Trans. Amer. Math. Soc., 238 (1978), 139. doi: 10.1090/S0002-9947-1978-0482913-0.

[38]

M. Piotrowska, A remark on the ode with two discrete delays,, Journal of Mathematical Analysis and Applications, 329 (2007), 664. doi: 10.1016/j.jmaa.2006.06.078.

[39]

C. G. Ragazzo and C. P. Malta, Singularity structure of the Hopf bifurcation surface of a differential equation with two delays,, Journal of Dynamics and Differential Equations, 4 (1992), 617. doi: 10.1007/BF01048262.

[40]

J. Ruiz-Claeyssen, Effects of delays on functional differential equations,, J. Diff. Eq., 20 (1976), 404. doi: 10.1016/0022-0396(76)90117-0.

[41]

S. Sakata, Asymptotic stability for a linear system of differential-difference equations,, Funkcial. Ekvac., 41 (1998), 435.

[42]

R. T. Wilsterman, An Analytic and Geometric Approach for Examining the Stability of Linear Differential Equations with Two Delays,, Master's Thesis, (2013).

[43]

T. Yoneyama and J. Sugie, On the stability region of differential equations with two delays,, Funkcial. Ekvac., 31 (1988), 233.

[44]

E. Zaron, The Delay Differential Equation: $x'(t) = -ax(t) + bx(t-\tau_1) + cx(t-\tau_2)$,, Technical report, (1987).

[1]

Farah Abdallah, Denis Mercier, Serge Nicaise. Spectral analysis and exponential or polynomial stability of some indefinite sign damped problems. Evolution Equations & Control Theory, 2013, 2 (1) : 1-33. doi: 10.3934/eect.2013.2.1

[2]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295

[3]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[4]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[5]

Tomás Caraballo, Renato Colucci, Luca Guerrini. Bifurcation scenarios in an ordinary differential equation with constant and distributed delay: A case study. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-17. doi: 10.3934/dcdsb.2018268

[6]

Michael Scheutzow. Exponential growth rate for a singular linear stochastic delay differential equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1683-1696. doi: 10.3934/dcdsb.2013.18.1683

[7]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[8]

Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445

[9]

Luis Barreira, Claudia Valls. Delay equations and nonuniform exponential stability. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 219-223. doi: 10.3934/dcdss.2008.1.219

[10]

Sun Yi, Patrick W. Nelson, A. Galip Ulsoy. Delay differential equations via the matrix lambert w function and bifurcation analysis: application to machine tool chatter. Mathematical Biosciences & Engineering, 2007, 4 (2) : 355-368. doi: 10.3934/mbe.2007.4.355

[11]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[12]

Junya Nishiguchi. On parameter dependence of exponential stability of equilibrium solutions in differential equations with a single constant delay. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5657-5679. doi: 10.3934/dcds.2016048

[13]

Yaru Xie, Genqi Xu. Exponential stability of 1-d wave equation with the boundary time delay based on the interior control. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 557-579. doi: 10.3934/dcdss.2017028

[14]

Eugenii Shustin. Exponential decay of oscillations in a multidimensional delay differential system. Conference Publications, 2003, 2003 (Special) : 809-816. doi: 10.3934/proc.2003.2003.809

[15]

Pham Huu Anh Ngoc. Stability of nonlinear differential systems with delay. Evolution Equations & Control Theory, 2015, 4 (4) : 493-505. doi: 10.3934/eect.2015.4.493

[16]

Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521

[17]

Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115

[18]

István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773

[19]

Shubo Zhao, Ping Liu, Mingchao Jiang. Stability and bifurcation analysis in a chemotaxis bistable growth system. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1165-1174. doi: 10.3934/dcdss.2017063

[20]

Eugen Stumpf. On a delay differential equation arising from a car-following model: Wavefront solutions with constant-speed and their stability. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3317-3340. doi: 10.3934/dcdsb.2017139

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]