2015, 12(4): 789-801. doi: 10.3934/mbe.2015.12.789

Global stability for the prion equation with general incidence

1. 

Laboratoire de Mathématiques de Versailles, CNRS UMR 8100, Université de Versailles Saint-Quentin-en-Yvelines, 45 Avenue de États-Unis, 78035 Versailles cedex

Received  May 2014 Revised  January 2015 Published  April 2015

We consider the so-called prion equation with the general incidence term introduced in [14], and we investigate the stability of the steady states. The method is based on the reduction technique introduced in [11]. The argument combines a recent spectral gap result for the growth-fragmentation equation in weighted $L^1$ spaces and the analysis of a nonlinear system of three ordinary differential equations.
Citation: Pierre Gabriel. Global stability for the prion equation with general incidence. Mathematical Biosciences & Engineering, 2015, 12 (4) : 789-801. doi: 10.3934/mbe.2015.12.789
References:
[1]

D. Balagué, J. A. Cañizo and P. Gabriel, Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates,, Kinetic Related Models, 6 (2013), 219. doi: 10.3934/krm.2013.6.219.

[2]

M. J. Cáceres, J. A. Cañizo and S. Mischler, Rate of convergence to self-similarity for the fragmentation equation in $L^1$ spaces,, Comm. Appl. Ind. Math., 1 (2010), 299.

[3]

M. J. Cáceres, J. A. Cañizo and S. Mischler, Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations,, J. Math. Pures Appl., 96 (2011), 334. doi: 10.1016/j.matpur.2011.01.003.

[4]

V. Calvez, N. Lenuzza, M. Doumic, J.-P. Deslys, F. Mouthon and B. Perthame, Prion dynamic with size dependency - strain phenomena,, J. Biol. Dyn., 4 (2010), 28. doi: 10.1080/17513750902935208.

[5]

V. Calvez, N. Lenuzza, D. Oelz, J.-P. Deslys, P. Laurent, F. Mouthon and B. Perthame, Size distribution dependence of prion aggregates infectivity,, Math. Biosci., 217 (2009), 88. doi: 10.1016/j.mbs.2008.10.007.

[6]

M. Doumic, T. Goudon and T. Lepoutre, Scaling limit of a discrete prion dynamics model,, Comm. Math. Sci., 7 (2009), 839. doi: 10.4310/CMS.2009.v7.n4.a3.

[7]

M. Doumic Jauffret and P. Gabriel, Eigenelements of a general aggregation-fragmentation model,, Math. Models Methods Appl. Sci., 20 (2010), 757. doi: 10.1142/S021820251000443X.

[8]

H. Engler, J. Prüss and G. Webb, Analysis of a model for the dynamics of prions ii,, J. Math. Anal. Appl., 324 (2006), 98. doi: 10.1016/j.jmaa.2005.11.021.

[9]

M. Escobedo, S. Mischler and M. Rodriguez Ricard, On self-similarity and stationary problem for fragmentation and coagulation models,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 99. doi: 10.1016/j.anihpc.2004.06.001.

[10]

P. Gabriel, The shape of the polymerization rate in the prion equation,, Math. Comput. Modelling, 53 (2011), 1451. doi: 10.1016/j.mcm.2010.03.032.

[11]

P. Gabriel, Long-time asymptotics for nonlinear growth-fragmentation equations,, Commun. Math. Sci., 10 (2012), 787. doi: 10.4310/CMS.2012.v10.n3.a4.

[12]

P. Gabriel and F. Salvarani, Exponential relaxation to self-similarity for the superquadratic fragmentation equation,, Appl. Math. Lett., 27 (2014), 74. doi: 10.1016/j.aml.2013.08.001.

[13]

M. L. Greer, L. Pujo-Menjouet and G. F. Webb, A mathematical analysis of the dynamics of prion proliferation,, J. Theoret. Biol., 242 (2006), 598. doi: 10.1016/j.jtbi.2006.04.010.

[14]

M. L. Greer, P. van den Driessche, L. Wang and G. F. Webb, Effects of general incidence and polymer joining on nucleated polymerization in a model of prion proliferation,, SIAM J. Appl. Math., 68 (2007), 154. doi: 10.1137/06066076X.

[15]

J. S. Griffith, Nature of the scrapie agent: Self-replication and scrapie,, Nature, 215 (1967), 1043. doi: 10.1038/2151043a0.

[16]

J. T. Jarrett and P. T. Lansbury, Seeding "one-dimensional crystallization'' of amyloid: A pathogenic mechanism in alzheimer's disease and scrapie?,, Cell, 73 (1993), 1055. doi: 10.1016/0092-8674(93)90635-4.

[17]

P. Laurençot and B. Perthame, Exponential decay for the growth-fragmentation/cell-division equation,, Commun. Math. Sci., 7 (2009), 503. doi: 10.4310/CMS.2009.v7.n2.a12.

[18]

P. Laurençot and C. Walker, Well-posedness for a model of prion proliferation dynamics,, J. Evol. Equ., 7 (2007), 241. doi: 10.1007/s00028-006-0279-2.

[19]

J. Masel, V. Jansen and M. Nowak, Quantifying the kinetic parameters of prion replication,, Biophysical Chemistry, 77 (1999), 139. doi: 10.1016/S0301-4622(99)00016-2.

[20]

P. Michel, S. Mischler and B. Perthame, General relative entropy inequality: An illustration on growth models,, J. Math. Pures Appl., 84 (2005), 1235. doi: 10.1016/j.matpur.2005.04.001.

[21]

S. Mischler and J. Scher, Spectral analysis of semigroups and growth-fragmentation equations, preprint,, , ().

[22]

B. Perthame and L. Ryzhik, Exponential decay for the fragmentation or cell-division equation,, J. Differential Equations, 210 (2005), 155. doi: 10.1016/j.jde.2004.10.018.

[23]

S. B. Prusiner, Novel proteinaceous infectious particles cause scrapie,, Science, 216 (1982), 136. doi: 10.1126/science.6801762.

[24]

J. Prüss, L. Pujo-Menjouet, G. Webb and R. Zacher, Analysis of a model for the dynamics of prion,, Dis. Cont. Dyn. Sys. Ser. B, 6 (2006), 225.

[25]

J. Silveira, G. Raymond, A. Hughson, R. Race, V. Sim, S. Hayes and B. Caughey, The most infectious prion protein particles,, Nature, 437 (2005), 257. doi: 10.1038/nature03989.

[26]

G. Simonett and C. Walker, On the solvability of a mathematical model for prion proliferation,, J. Math. Anal. Appl., 324 (2006), 580. doi: 10.1016/j.jmaa.2005.12.036.

[27]

H. L. Smith, Monotone Dynamical Systems,, American Mathematical Society, (1995).

[28]

C. Walker, Prion proliferation with unbounded polymerization rates,, in Proceedings of the Sixth Mississippi State-UBA Conference on Differential Equations and Computational Simulations, 15 (2007), 387.

show all references

References:
[1]

D. Balagué, J. A. Cañizo and P. Gabriel, Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates,, Kinetic Related Models, 6 (2013), 219. doi: 10.3934/krm.2013.6.219.

[2]

M. J. Cáceres, J. A. Cañizo and S. Mischler, Rate of convergence to self-similarity for the fragmentation equation in $L^1$ spaces,, Comm. Appl. Ind. Math., 1 (2010), 299.

[3]

M. J. Cáceres, J. A. Cañizo and S. Mischler, Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations,, J. Math. Pures Appl., 96 (2011), 334. doi: 10.1016/j.matpur.2011.01.003.

[4]

V. Calvez, N. Lenuzza, M. Doumic, J.-P. Deslys, F. Mouthon and B. Perthame, Prion dynamic with size dependency - strain phenomena,, J. Biol. Dyn., 4 (2010), 28. doi: 10.1080/17513750902935208.

[5]

V. Calvez, N. Lenuzza, D. Oelz, J.-P. Deslys, P. Laurent, F. Mouthon and B. Perthame, Size distribution dependence of prion aggregates infectivity,, Math. Biosci., 217 (2009), 88. doi: 10.1016/j.mbs.2008.10.007.

[6]

M. Doumic, T. Goudon and T. Lepoutre, Scaling limit of a discrete prion dynamics model,, Comm. Math. Sci., 7 (2009), 839. doi: 10.4310/CMS.2009.v7.n4.a3.

[7]

M. Doumic Jauffret and P. Gabriel, Eigenelements of a general aggregation-fragmentation model,, Math. Models Methods Appl. Sci., 20 (2010), 757. doi: 10.1142/S021820251000443X.

[8]

H. Engler, J. Prüss and G. Webb, Analysis of a model for the dynamics of prions ii,, J. Math. Anal. Appl., 324 (2006), 98. doi: 10.1016/j.jmaa.2005.11.021.

[9]

M. Escobedo, S. Mischler and M. Rodriguez Ricard, On self-similarity and stationary problem for fragmentation and coagulation models,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 99. doi: 10.1016/j.anihpc.2004.06.001.

[10]

P. Gabriel, The shape of the polymerization rate in the prion equation,, Math. Comput. Modelling, 53 (2011), 1451. doi: 10.1016/j.mcm.2010.03.032.

[11]

P. Gabriel, Long-time asymptotics for nonlinear growth-fragmentation equations,, Commun. Math. Sci., 10 (2012), 787. doi: 10.4310/CMS.2012.v10.n3.a4.

[12]

P. Gabriel and F. Salvarani, Exponential relaxation to self-similarity for the superquadratic fragmentation equation,, Appl. Math. Lett., 27 (2014), 74. doi: 10.1016/j.aml.2013.08.001.

[13]

M. L. Greer, L. Pujo-Menjouet and G. F. Webb, A mathematical analysis of the dynamics of prion proliferation,, J. Theoret. Biol., 242 (2006), 598. doi: 10.1016/j.jtbi.2006.04.010.

[14]

M. L. Greer, P. van den Driessche, L. Wang and G. F. Webb, Effects of general incidence and polymer joining on nucleated polymerization in a model of prion proliferation,, SIAM J. Appl. Math., 68 (2007), 154. doi: 10.1137/06066076X.

[15]

J. S. Griffith, Nature of the scrapie agent: Self-replication and scrapie,, Nature, 215 (1967), 1043. doi: 10.1038/2151043a0.

[16]

J. T. Jarrett and P. T. Lansbury, Seeding "one-dimensional crystallization'' of amyloid: A pathogenic mechanism in alzheimer's disease and scrapie?,, Cell, 73 (1993), 1055. doi: 10.1016/0092-8674(93)90635-4.

[17]

P. Laurençot and B. Perthame, Exponential decay for the growth-fragmentation/cell-division equation,, Commun. Math. Sci., 7 (2009), 503. doi: 10.4310/CMS.2009.v7.n2.a12.

[18]

P. Laurençot and C. Walker, Well-posedness for a model of prion proliferation dynamics,, J. Evol. Equ., 7 (2007), 241. doi: 10.1007/s00028-006-0279-2.

[19]

J. Masel, V. Jansen and M. Nowak, Quantifying the kinetic parameters of prion replication,, Biophysical Chemistry, 77 (1999), 139. doi: 10.1016/S0301-4622(99)00016-2.

[20]

P. Michel, S. Mischler and B. Perthame, General relative entropy inequality: An illustration on growth models,, J. Math. Pures Appl., 84 (2005), 1235. doi: 10.1016/j.matpur.2005.04.001.

[21]

S. Mischler and J. Scher, Spectral analysis of semigroups and growth-fragmentation equations, preprint,, , ().

[22]

B. Perthame and L. Ryzhik, Exponential decay for the fragmentation or cell-division equation,, J. Differential Equations, 210 (2005), 155. doi: 10.1016/j.jde.2004.10.018.

[23]

S. B. Prusiner, Novel proteinaceous infectious particles cause scrapie,, Science, 216 (1982), 136. doi: 10.1126/science.6801762.

[24]

J. Prüss, L. Pujo-Menjouet, G. Webb and R. Zacher, Analysis of a model for the dynamics of prion,, Dis. Cont. Dyn. Sys. Ser. B, 6 (2006), 225.

[25]

J. Silveira, G. Raymond, A. Hughson, R. Race, V. Sim, S. Hayes and B. Caughey, The most infectious prion protein particles,, Nature, 437 (2005), 257. doi: 10.1038/nature03989.

[26]

G. Simonett and C. Walker, On the solvability of a mathematical model for prion proliferation,, J. Math. Anal. Appl., 324 (2006), 580. doi: 10.1016/j.jmaa.2005.12.036.

[27]

H. L. Smith, Monotone Dynamical Systems,, American Mathematical Society, (1995).

[28]

C. Walker, Prion proliferation with unbounded polymerization rates,, in Proceedings of the Sixth Mississippi State-UBA Conference on Differential Equations and Computational Simulations, 15 (2007), 387.

[1]

Peter V. Gordon, Cyrill B. Muratov. Self-similarity and long-time behavior of solutions of the diffusion equation with nonlinear absorption and a boundary source. Networks & Heterogeneous Media, 2012, 7 (4) : 767-780. doi: 10.3934/nhm.2012.7.767

[2]

Marie Doumic, Miguel Escobedo. Time asymptotics for a critical case in fragmentation and growth-fragmentation equations. Kinetic & Related Models, 2016, 9 (2) : 251-297. doi: 10.3934/krm.2016.9.251

[3]

Jean-Paul Chehab, Pierre Garnier, Youcef Mammeri. Long-time behavior of solutions of a BBM equation with generalized damping. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1897-1915. doi: 10.3934/dcdsb.2015.20.1897

[4]

Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163

[5]

Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure & Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219

[6]

Brahim Alouini. Long-time behavior of a Bose-Einstein equation in a two-dimensional thin domain. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1629-1643. doi: 10.3934/cpaa.2011.10.1629

[7]

Lu Yang, Meihua Yang. Long-time behavior of stochastic reaction-diffusion equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2627-2650. doi: 10.3934/dcdsb.2017102

[8]

Belkacem Said-Houari. Long-time behavior of solutions of the generalized Korteweg--de Vries equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 245-252. doi: 10.3934/dcdsb.2016.21.245

[9]

Yihong Du, Yoshio Yamada. On the long-time limit of positive solutions to the degenerate logistic equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 123-132. doi: 10.3934/dcds.2009.25.123

[10]

Pelin G. Geredeli, Azer Khanmamedov. Long-time dynamics of the parabolic $p$-Laplacian equation. Communications on Pure & Applied Analysis, 2013, 12 (2) : 735-754. doi: 10.3934/cpaa.2013.12.735

[11]

Vladimir Varlamov. Eigenfunction expansion method and the long-time asymptotics for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 675-702. doi: 10.3934/dcds.2001.7.675

[12]

Rogelio Valdez. Self-similarity of the Mandelbrot set for real essentially bounded combinatorics. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 897-922. doi: 10.3934/dcds.2006.16.897

[13]

Yue-Jun Peng, Yong-Fu Yang. Long-time behavior and stability of entropy solutions for linearly degenerate hyperbolic systems of rich type. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3683-3706. doi: 10.3934/dcds.2015.35.3683

[14]

Arthur Henrique Caixeta, Irena Lasiecka, Valéria Neves Domingos Cavalcanti. On long time behavior of Moore-Gibson-Thompson equation with molecular relaxation. Evolution Equations & Control Theory, 2016, 5 (4) : 661-676. doi: 10.3934/eect.2016024

[15]

Min Chen, Olivier Goubet. Long-time asymptotic behavior of dissipative Boussinesq systems. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 509-528. doi: 10.3934/dcds.2007.17.509

[16]

Nguyen Huu Du, Nguyen Thanh Dieu. Long-time behavior of an SIR model with perturbed disease transmission coefficient. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3429-3440. doi: 10.3934/dcdsb.2016105

[17]

Chang Zhang, Fang Li, Jinqiao Duan. Long-time behavior of a class of nonlocal partial differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 749-763. doi: 10.3934/dcdsb.2018041

[18]

Hongtao Li, Shan Ma, Chengkui Zhong. Long-time behavior for a class of degenerate parabolic equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2873-2892. doi: 10.3934/dcds.2014.34.2873

[19]

Nataliia V. Gorban, Olha V. Khomenko, Liliia S. Paliichuk, Alla M. Tkachuk. Long-time behavior of state functions for climate energy balance model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1887-1897. doi: 10.3934/dcdsb.2017112

[20]

Jan Prüss, Vicente Vergara, Rico Zacher. Well-posedness and long-time behaviour for the non-isothermal Cahn-Hilliard equation with memory. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 625-647. doi: 10.3934/dcds.2010.26.625

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]