• Previous Article
    Bifurcation analysis and transient spatio-temporal dynamics for a diffusive plant-herbivore system with Dirichlet boundary conditions
  • MBE Home
  • This Issue
  • Next Article
    Optimal design for parameter estimation in EEG problems in a 3D multilayered domain
2015, 12(4): 717-737. doi: 10.3934/mbe.2015.12.717

Traveling bands for the Keller-Segel model with population growth

1. 

Department of Mathematical Sciences, University of Alabama in Huntsville, Huntsville, AL 35899

2. 

Department of Applied Mathematics, Hong Kong Polytechnic University, Hung Hom, Hong Kong, China

Received  April 2014 Revised  November 2014 Published  April 2015

This paper is concerned with the existence of the traveling bands to the Keller-Segel model with cell population growth in the form of a chemical uptake kinetics. We find that when the cell growth is considered, the profile of traveling bands, the minimum wave speed and the range of the chemical consumption rate for the existence of traveling wave solutions will change. Our results reveal that collective interaction of cell growth and chemical consumption rate plays an essential role in the generation of traveling bands. The research in the paper provides new insights into the mechanisms underlying the chemotactic pattern formation of wave bands.
Citation: Shangbing Ai, Zhian Wang. Traveling bands for the Keller-Segel model with population growth. Mathematical Biosciences & Engineering, 2015, 12 (4) : 717-737. doi: 10.3934/mbe.2015.12.717
References:
[1]

J. Adler, Chemotaxis in bacteria,, Science, 44 (1975), 341. doi: 10.1146/annurev.bi.44.070175.002013.

[2]

J. Adler, Chemoreceptors in bacteria,, Science, 166 (1969), 1588. doi: 10.1126/science.166.3913.1588.

[3]

S. Ai, W. Huang and Z. Wang, Reaction, diffusion and chemotaxis in wave propagation,, Dicrete Contin. Dyn. Syst.-Series B, 20 (2015), 1. doi: 10.3934/dcdsb.2015.20.1.

[4]

J. Anh and K. Kang, On a keller-segel system with logarithmic sensitivity and non-diffusive chemical,, Dicrete Contin. Dyn. Syst., 34 (2014), 5165. doi: 10.3934/dcds.2014.34.5165.

[5]

L. Corrias, B. Perthame and H. Zaag, A chemotaxis model motivated by angiogenesis,, C. R. Acad. Sci. Paris. Ser. I., 336 (2003), 141. doi: 10.1016/S1631-073X(02)00008-0.

[6]

L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis system in high space dimensions,, Milan j. Math., 72 (2004), 1. doi: 10.1007/s00032-003-0026-x.

[7]

M. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis,, SIAM J. Math. Anal., 33 (2002), 1330. doi: 10.1137/S0036141001385046.

[8]

M. Funaki, M. Mimura and T. Tsujikawa, Travelling front solutions arising in the chemotaxis-growth model,, Interfaces Free Bound., 8 (2006), 223. doi: 10.4171/IFB/141.

[9]

H. Jin, J. Li and Z. Wang, Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity,, J. Differential Equations, 255 (2013), 193. doi: 10.1016/j.jde.2013.04.002.

[10]

Y. Kalinin, L. Jiang, Y. Tu and M. Wu, Logarithmic sensing in escherichia coli bacterial chemotaxis,, Biophysical Journal, 96 (2009), 2439. doi: 10.1016/j.bpj.2008.10.027.

[11]

E. Keller and L. Segel, Traveling bands of chemotactic bacteria: A theorectical analysis,, J. Theor. Biol., 30 (1971), 235. doi: 10.1016/0022-5193(71)90051-8.

[12]

C. Kennedy and R. Aris, Traveling waves in a simple population model involving growth and death,, Bull. Math. Biol., 42 (1980), 397. doi: 10.1007/BF02460793.

[13]

I. Lapidus and R. Schiller, A model for traveling bands of chemotactic bacteria,, Biophy. J., 22 (1978), 1. doi: 10.1016/S0006-3495(78)85466-6.

[14]

D. Lauffenburger, C. Kennedy and R. Aris, Traveling bands of chemotactic bacteria in the context of population growth,, Bull. Math. Biol., 46 (1984), 19.

[15]

H. Levine, B. Sleeman and M. Nilsen-Hamilton, A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis. i. the role of protease inhibitors in preventing angiogenesis,, Math. Biosci, 168 (2000), 71. doi: 10.1016/S0025-5564(00)00034-1.

[16]

D. Li, T. Li and K. Zhao, On a hyperbolic-parabolic system modeling chemotaxis,, Math. Models Methods Appl. Sci., 21 (2011), 1631. doi: 10.1142/S0218202511005519.

[17]

J. Li, T. Li and Z. WAng, Stability of traveling waves of the Keller-Segel system with logarithmic sensitivity,, Math. Models Methods Appl. Sci., 24 (2014), 2819. doi: 10.1142/S0218202514500389.

[18]

T. Li and Z. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis,, SIAM J. Appl. Math., 70 (2009), 1522. doi: 10.1137/09075161X.

[19]

T. Li and Z. Wang, Nonlinear stability of large amplitude viscous shock waves of a hyperbolic-parabolic system arising in chemotaxis,, Math. Models Methods Appl. Sci., 20 (2010), 1967. doi: 10.1142/S0218202510004830.

[20]

T. Li and Z. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis,, J. Differential Equations, 250 (2011), 1310. doi: 10.1016/j.jde.2010.09.020.

[21]

R. Lui and Z. Wang, Traveling wave solutions from microscopic to macroscopic chemotaxis models,, J. Math. Biol., 61 (2010), 739. doi: 10.1007/s00285-009-0317-0.

[22]

G. Nadin, B. Perthame and L. Ryzhik, Traveling waves for the Keller-Segel system with fisher birth terms,, Interfaces Free Bound., 10 (2008), 517. doi: 10.4171/IFB/200.

[23]

T. Nagai and T. Ikeda, Traveling waves in a chemotaxis model,, J. Math. Biol., 30 (1991), 169. doi: 10.1007/BF00160334.

[24]

R. Nossal, Boundary movement of chemotactic bacterial population,, Math. Biosci., 13 (1972), 397. doi: 10.1016/0025-5564(72)90058-2.

[25]

G. Rosen, Analytical solution to the initial-value problem for traveling bands of chemotaxis bacteria,, J. Theor. Biol., 49 (1975), 311.

[26]

G. Rosen, Steady-state distribution of bacteria chemotactic toward oxygen,, Bull. Math. Biol., 40 (1978), 671. doi: 10.1007/BF02460738.

[27]

G. Rosen and S. Baloga, On the stability of steadily propogating bands of chemotactic bacteria,, Math. Biosci., 24 (1975), 273. doi: 10.1016/0025-5564(75)90080-2.

[28]

J. Saragosti, V. Calvez, N. Bournaveas, A. Buguin, P. Silberzan and B. Perthame, Mathematical description of bacterial traveling pulses,, PLoS computational biology, 6 (2010). doi: 10.1371/journal.pcbi.1000890.

[29]

J. Saragosti, V. Calvez, N. Bournaveas, B. Perthame, A. Buguin and P. Silberzan, Directional persistence of chemotactic bacteria in a traveling concentration wave,, PNAS, 108 (2011), 16235. doi: 10.1073/pnas.1101996108.

[30]

H. Schwetlick, Traveling waves for chemotaxis systems,, Proc. Appl. Math. Mech., 3 (2003), 476. doi: 10.1002/pamm.200310508.

[31]

C. Walker and G. Webb, Global existence of classical solutions for a haptoaxis model,, SIAM J. Math. Anal., 38 (2006), 1694. doi: 10.1137/060655122.

[32]

Z. Wang, Wavefront of an angiogenesis model,, Discrete Contin. Dyn. Syst.-Series B, 17 (2012), 2849. doi: 10.3934/dcdsb.2012.17.2849.

[33]

Z. Wang, Mathematics of traveling waves in chemotaxis,, Discrete Contin. Dyn. Syst.-Series B, 18 (2013), 601. doi: 10.3934/dcdsb.2013.18.601.

[34]

Z. Wang and T. Hillen, Shock formation in a chemotaxis model,, Math. Methods. Appl. Sci., 31 (2008), 45. doi: 10.1002/mma.898.

show all references

References:
[1]

J. Adler, Chemotaxis in bacteria,, Science, 44 (1975), 341. doi: 10.1146/annurev.bi.44.070175.002013.

[2]

J. Adler, Chemoreceptors in bacteria,, Science, 166 (1969), 1588. doi: 10.1126/science.166.3913.1588.

[3]

S. Ai, W. Huang and Z. Wang, Reaction, diffusion and chemotaxis in wave propagation,, Dicrete Contin. Dyn. Syst.-Series B, 20 (2015), 1. doi: 10.3934/dcdsb.2015.20.1.

[4]

J. Anh and K. Kang, On a keller-segel system with logarithmic sensitivity and non-diffusive chemical,, Dicrete Contin. Dyn. Syst., 34 (2014), 5165. doi: 10.3934/dcds.2014.34.5165.

[5]

L. Corrias, B. Perthame and H. Zaag, A chemotaxis model motivated by angiogenesis,, C. R. Acad. Sci. Paris. Ser. I., 336 (2003), 141. doi: 10.1016/S1631-073X(02)00008-0.

[6]

L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis system in high space dimensions,, Milan j. Math., 72 (2004), 1. doi: 10.1007/s00032-003-0026-x.

[7]

M. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis,, SIAM J. Math. Anal., 33 (2002), 1330. doi: 10.1137/S0036141001385046.

[8]

M. Funaki, M. Mimura and T. Tsujikawa, Travelling front solutions arising in the chemotaxis-growth model,, Interfaces Free Bound., 8 (2006), 223. doi: 10.4171/IFB/141.

[9]

H. Jin, J. Li and Z. Wang, Asymptotic stability of traveling waves of a chemotaxis model with singular sensitivity,, J. Differential Equations, 255 (2013), 193. doi: 10.1016/j.jde.2013.04.002.

[10]

Y. Kalinin, L. Jiang, Y. Tu and M. Wu, Logarithmic sensing in escherichia coli bacterial chemotaxis,, Biophysical Journal, 96 (2009), 2439. doi: 10.1016/j.bpj.2008.10.027.

[11]

E. Keller and L. Segel, Traveling bands of chemotactic bacteria: A theorectical analysis,, J. Theor. Biol., 30 (1971), 235. doi: 10.1016/0022-5193(71)90051-8.

[12]

C. Kennedy and R. Aris, Traveling waves in a simple population model involving growth and death,, Bull. Math. Biol., 42 (1980), 397. doi: 10.1007/BF02460793.

[13]

I. Lapidus and R. Schiller, A model for traveling bands of chemotactic bacteria,, Biophy. J., 22 (1978), 1. doi: 10.1016/S0006-3495(78)85466-6.

[14]

D. Lauffenburger, C. Kennedy and R. Aris, Traveling bands of chemotactic bacteria in the context of population growth,, Bull. Math. Biol., 46 (1984), 19.

[15]

H. Levine, B. Sleeman and M. Nilsen-Hamilton, A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis. i. the role of protease inhibitors in preventing angiogenesis,, Math. Biosci, 168 (2000), 71. doi: 10.1016/S0025-5564(00)00034-1.

[16]

D. Li, T. Li and K. Zhao, On a hyperbolic-parabolic system modeling chemotaxis,, Math. Models Methods Appl. Sci., 21 (2011), 1631. doi: 10.1142/S0218202511005519.

[17]

J. Li, T. Li and Z. WAng, Stability of traveling waves of the Keller-Segel system with logarithmic sensitivity,, Math. Models Methods Appl. Sci., 24 (2014), 2819. doi: 10.1142/S0218202514500389.

[18]

T. Li and Z. Wang, Nonlinear stability of traveling waves to a hyperbolic-parabolic system modeling chemotaxis,, SIAM J. Appl. Math., 70 (2009), 1522. doi: 10.1137/09075161X.

[19]

T. Li and Z. Wang, Nonlinear stability of large amplitude viscous shock waves of a hyperbolic-parabolic system arising in chemotaxis,, Math. Models Methods Appl. Sci., 20 (2010), 1967. doi: 10.1142/S0218202510004830.

[20]

T. Li and Z. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis,, J. Differential Equations, 250 (2011), 1310. doi: 10.1016/j.jde.2010.09.020.

[21]

R. Lui and Z. Wang, Traveling wave solutions from microscopic to macroscopic chemotaxis models,, J. Math. Biol., 61 (2010), 739. doi: 10.1007/s00285-009-0317-0.

[22]

G. Nadin, B. Perthame and L. Ryzhik, Traveling waves for the Keller-Segel system with fisher birth terms,, Interfaces Free Bound., 10 (2008), 517. doi: 10.4171/IFB/200.

[23]

T. Nagai and T. Ikeda, Traveling waves in a chemotaxis model,, J. Math. Biol., 30 (1991), 169. doi: 10.1007/BF00160334.

[24]

R. Nossal, Boundary movement of chemotactic bacterial population,, Math. Biosci., 13 (1972), 397. doi: 10.1016/0025-5564(72)90058-2.

[25]

G. Rosen, Analytical solution to the initial-value problem for traveling bands of chemotaxis bacteria,, J. Theor. Biol., 49 (1975), 311.

[26]

G. Rosen, Steady-state distribution of bacteria chemotactic toward oxygen,, Bull. Math. Biol., 40 (1978), 671. doi: 10.1007/BF02460738.

[27]

G. Rosen and S. Baloga, On the stability of steadily propogating bands of chemotactic bacteria,, Math. Biosci., 24 (1975), 273. doi: 10.1016/0025-5564(75)90080-2.

[28]

J. Saragosti, V. Calvez, N. Bournaveas, A. Buguin, P. Silberzan and B. Perthame, Mathematical description of bacterial traveling pulses,, PLoS computational biology, 6 (2010). doi: 10.1371/journal.pcbi.1000890.

[29]

J. Saragosti, V. Calvez, N. Bournaveas, B. Perthame, A. Buguin and P. Silberzan, Directional persistence of chemotactic bacteria in a traveling concentration wave,, PNAS, 108 (2011), 16235. doi: 10.1073/pnas.1101996108.

[30]

H. Schwetlick, Traveling waves for chemotaxis systems,, Proc. Appl. Math. Mech., 3 (2003), 476. doi: 10.1002/pamm.200310508.

[31]

C. Walker and G. Webb, Global existence of classical solutions for a haptoaxis model,, SIAM J. Math. Anal., 38 (2006), 1694. doi: 10.1137/060655122.

[32]

Z. Wang, Wavefront of an angiogenesis model,, Discrete Contin. Dyn. Syst.-Series B, 17 (2012), 2849. doi: 10.3934/dcdsb.2012.17.2849.

[33]

Z. Wang, Mathematics of traveling waves in chemotaxis,, Discrete Contin. Dyn. Syst.-Series B, 18 (2013), 601. doi: 10.3934/dcdsb.2013.18.601.

[34]

Z. Wang and T. Hillen, Shock formation in a chemotaxis model,, Math. Methods. Appl. Sci., 31 (2008), 45. doi: 10.1002/mma.898.

[1]

Yajing Zhang, Xinfu Chen, Jianghao Hao, Xin Lai, Cong Qin. Dynamics of spike in a Keller-Segel's minimal chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1109-1127. doi: 10.3934/dcds.2017046

[2]

Vincent Calvez, Benoȋt Perthame, Shugo Yasuda. Traveling wave and aggregation in a flux-limited Keller-Segel model. Kinetic & Related Models, 2018, 11 (4) : 891-909. doi: 10.3934/krm.2018035

[3]

Wenting Cong, Jian-Guo Liu. A degenerate $p$-Laplacian Keller-Segel model. Kinetic & Related Models, 2016, 9 (4) : 687-714. doi: 10.3934/krm.2016012

[4]

Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231

[5]

Qi Wang, Jingyue Yang, Lu Zhang. Time-periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model: Effect of cellular growth. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3547-3574. doi: 10.3934/dcdsb.2017179

[6]

Norikazu Saito. Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis. Communications on Pure & Applied Analysis, 2012, 11 (1) : 339-364. doi: 10.3934/cpaa.2012.11.339

[7]

Marco Di Francesco, Donatella Donatelli. Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 79-100. doi: 10.3934/dcdsb.2010.13.79

[8]

Zhichun Zhai. Well-posedness for two types of generalized Keller-Segel system of chemotaxis in critical Besov spaces. Communications on Pure & Applied Analysis, 2011, 10 (1) : 287-308. doi: 10.3934/cpaa.2011.10.287

[9]

Tian Xiang. On effects of sampling radius for the nonlocal Patlak-Keller-Segel chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4911-4946. doi: 10.3934/dcds.2014.34.4911

[10]

Tohru Tsujikawa, Kousuke Kuto, Yasuhito Miyamoto, Hirofumi Izuhara. Stationary solutions for some shadow system of the Keller-Segel model with logistic growth. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 1023-1034. doi: 10.3934/dcdss.2015.8.1023

[11]

Jean Dolbeault, Christian Schmeiser. The two-dimensional Keller-Segel model after blow-up. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 109-121. doi: 10.3934/dcds.2009.25.109

[12]

Shen Bian, Jian-Guo Liu, Chen Zou. Ultra-contractivity for Keller-Segel model with diffusion exponent $m>1-2/d$. Kinetic & Related Models, 2014, 7 (1) : 9-28. doi: 10.3934/krm.2014.7.9

[13]

Wenting Cong, Jian-Guo Liu. Uniform $L^{∞}$ boundedness for a degenerate parabolic-parabolic Keller-Segel model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 307-338. doi: 10.3934/dcdsb.2017015

[14]

Xinru Cao. Large time behavior in the logistic Keller-Segel model via maximal Sobolev regularity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3369-3378. doi: 10.3934/dcdsb.2017141

[15]

Dashun Xu, Xiao-Qiang Zhao. Asymptotic speed of spread and traveling waves for a nonlocal epidemic model. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 1043-1056. doi: 10.3934/dcdsb.2005.5.1043

[16]

José Antonio Carrillo, Stefano Lisini, Edoardo Mainini. Uniqueness for Keller-Segel-type chemotaxis models. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1319-1338. doi: 10.3934/dcds.2014.34.1319

[17]

Qi Wang, Lu Zhang, Jingyue Yang, Jia Hu. Global existence and steady states of a two competing species Keller--Segel chemotaxis model. Kinetic & Related Models, 2015, 8 (4) : 777-807. doi: 10.3934/krm.2015.8.777

[18]

Jinhuan Wang, Li Chen, Liang Hong. Parabolic elliptic type Keller-Segel system on the whole space case. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1061-1084. doi: 10.3934/dcds.2016.36.1061

[19]

Ping Liu, Junping Shi, Zhi-An Wang. Pattern formation of the attraction-repulsion Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2597-2625. doi: 10.3934/dcdsb.2013.18.2597

[20]

Xie Li, Zhaoyin Xiang. Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3503-3531. doi: 10.3934/dcds.2015.35.3503

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]