
Previous Article
Stability and persistence in ODE models for populations with many stages
 MBE Home
 This Issue

Next Article
Bifurcation analysis and transient spatiotemporal dynamics for a diffusive plantherbivore system with Dirichlet boundary conditions
Mathematical probit and logistic mortality models of the Khapra beetle fumigated with plant essential oils
1.  Department of Mathematics, Najran University, Najran,1988, Saudi Arabia 
2.  Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr El sheikh3516, Egypt, Egypt 
References:
[1] 
A. Agresti, An Introduction to Categorical Data Analysis,, $2^{nd}$ edition, (2007). doi: 10.1002/0470114754. 
[2] 
C. H. Bell and S. M. Wilson, Phosphine tolerance and resistance in Trogoderma granarium Everts (Coleoptera: Dermestidae),, J. Stored Prod. Res., 31 (1995), 199. doi: 10.1016/0022474X(95)00012V. 
[3] 
A. Ben and T. Greville, Generalized Inverses: Theory and Applications,, Springer press, (2003). 
[4] 
C. I. Bliss, The relation between exposure time, concentration and toxicity in experiments on insecticides,, Ann. Entomol. Soc. Am., 33 (1940), 721. doi: 10.1093/aesa/33.4.721. 
[5] 
E. J. Bond, Manual of Fumigation for Insect Control,, in: FAO Plant Production and Protection Paper, (1984). 
[6] 
S. Boyer, H. Zhang and G. Lempérière, A review of control methods and resistance mechanisms in storedproduct insects,, B. Entomol. Res., 102 (2012), 213. doi: 10.1017/S0007485311000654. 
[7] 
M. Q. Chaudhry, A review of the mechanisms involved in the action of phosphine as an insecticide and phosphine resistance in storedproduct insects,, Pestic Sci., 49 (1997), 213. doi: 10.1002/(SICI)10969063(199703)49:3<213::AIDPS516>3.3.CO;2R. 
[8] 
P. J. Collins, G. Daglish, H. Pavic and R. Kopittke, Response of mixedage cultures of phosphineresistant and susceptible strains of lesser grain borer, Rhyzopertha dominica to phosphine at a range of concentrations and exposure periods,, J. Stored Prod. Res., 41 (2005), 373. doi: 10.1016/j.jspr.2004.05.002. 
[9] 
P. Eliopoulos, New approaches for tackling Khapra beetle,, CAB Rev., 8 (2013), 1. 
[10]  
[11] 
W. Hermawan, S. Nakajima, R. Tsukuda, K. Fujisaki and F. Nakasuji, Isolation of an antifeedant compound from Andrographis paniculata (Acanthaceae) against the diamond back, Plutella xylostella (Lepidoptera: Yponomeutidae),, Appl. Entomol. Zool, 32 (1997), 551. 
[12] 
M. B. Isman, Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world,, Annu. Rev. Entomol., 51 (2006), 45. doi: 10.1146/annurev.ento.51.110104.151146. 
[13] 
M. B. Isman, C. Machial, S. Miresmailli and L. Bainard, Essential oilbased pesticides: New insights from old chemistry,, in Pesticide Chemistry (WileyVCH, (2007), 201. doi: 10.1002/9783527611249.ch21. 
[14] 
K. Lilford, G. Fulford, D. Schlipalius and A. Ridley, Fumigation of storedgrain insectsa two locus model of phosphine resistance,, in The 18th World IMACS Congress and MODSIM09, (2009). 
[15] 
S. Lowe, M. Browne, S. Boudjelas and M. de Poorter, 100 of the world's worst invasive alien species, The global invasive species database,, in: World Conservation Union, (2000). 
[16] 
G. Nenaah, Toxic and antifeedant activities of potato glycoalkaloids against Trogoderma granarium (Coleoptera: Dermestidae),, J. Stored Prod. Res., 47 (2011), 185. doi: 10.1016/j.jspr.2010.11.003. 
[17] 
G. Nenaah, Chemical composition, insecticidal and repellence activities of essential oils of three Achillea species against the Khapra beetle (Coleoptera: Dermestidae),, J. Pest Sci., 87 (2014), 273. doi: 10.1007/s1034001305471. 
[18] 
G. Nenaah, Chemical composition, toxicity and growth inhibitory activities of essential oils of three Achillea species and their nanoemulsions against Tribolium castaneum (Herbst),, Ind. Crop Prod., 53 (2014), 252. 
[19] 
G. Nenaah and S. Ibrahim, Chemical composition and the insecticidal activity of certain plants applied as powders and essential oils against two storedproducts coleopteran beetles,, J. Pest Sci., 84 (2011), 393. doi: 10.1007/s1034001103545. 
[20] 
P. PretheepKumar, S. Mohan and P. Balasubramanian, Insecticide Resistancestoredproduct,, mechanism and management strategies, (2010). 
[21] 
S. Rajendran, Postharvest pest losses. New York in: Pimentel,, in D. (Ed), (2002). 
[22] 
S. Rajendran and V. Sriranjini, Plant products as fumigants for storedproduct insect control,, J. Stored Prod. Res., 44 (2008), 126. doi: 10.1016/j.jspr.2007.08.003. 
[23] 
C. RegnaultRoger, C. Vincent and J. T. Arnason, Essential oils in insect control: Lowrisk products in a highstakes world,, Annu. Rev. Entomol., 57 (2012), 405. doi: 10.1146/annurevento120710100554. 
[24] 
M. Shi, P. Collins, J. Smith and M. Renton, Individualbased modelling of the efficacy of fumigation tactics to control lesser grain borer (Rhyzopertha dominica) in stored grain,, J. Stored Prod. Res., 51 (2012), 23. doi: 10.1016/j.jspr.2012.06.003. 
[25] 
M. Shi and M. Renton, Modelling mortality of a stored grain insect pest with fumigation: Probit, logistic or Cauchy model?,, Math. Biosci., 243 (2013), 137. doi: 10.1016/j.mbs.2013.02.005. 
[26] 
M. Shi and M. Renton, Numerical algorithms for estimation and calculation of parameters in modelling pest population dynamics and evolution of resistance in modelling pest population dynamics and evolution of resistance,, Math. Biosci., 233 (2011), 77. doi: 10.1016/j.mbs.2011.06.005. 
[27] 
M. Shi, M. Renton, J. RidsdillSmith and P. J. Collins, Constructing a new individualbased model of phosphine resistance in lesser grain borer (Rhyzopertha dominica): do we need to include two loci rather than one?,, J. Pest Sci., 85 (2012), 451. doi: 10.1007/s1034001204216. 
[28] 
R. G. Winks, The toxicity of phosphine to adults of Tribolium castaneum (Herbst): phosphineinduced narcosis,, J. Stored Prod. Res., 21 (1985), 25. doi: 10.1016/0022474X(85)900566. 
[29] 
J. R. Wolberg, Data analysis using the method of least squares,, Extracting the Most Information From Experiments, (2005). 
show all references
References:
[1] 
A. Agresti, An Introduction to Categorical Data Analysis,, $2^{nd}$ edition, (2007). doi: 10.1002/0470114754. 
[2] 
C. H. Bell and S. M. Wilson, Phosphine tolerance and resistance in Trogoderma granarium Everts (Coleoptera: Dermestidae),, J. Stored Prod. Res., 31 (1995), 199. doi: 10.1016/0022474X(95)00012V. 
[3] 
A. Ben and T. Greville, Generalized Inverses: Theory and Applications,, Springer press, (2003). 
[4] 
C. I. Bliss, The relation between exposure time, concentration and toxicity in experiments on insecticides,, Ann. Entomol. Soc. Am., 33 (1940), 721. doi: 10.1093/aesa/33.4.721. 
[5] 
E. J. Bond, Manual of Fumigation for Insect Control,, in: FAO Plant Production and Protection Paper, (1984). 
[6] 
S. Boyer, H. Zhang and G. Lempérière, A review of control methods and resistance mechanisms in storedproduct insects,, B. Entomol. Res., 102 (2012), 213. doi: 10.1017/S0007485311000654. 
[7] 
M. Q. Chaudhry, A review of the mechanisms involved in the action of phosphine as an insecticide and phosphine resistance in storedproduct insects,, Pestic Sci., 49 (1997), 213. doi: 10.1002/(SICI)10969063(199703)49:3<213::AIDPS516>3.3.CO;2R. 
[8] 
P. J. Collins, G. Daglish, H. Pavic and R. Kopittke, Response of mixedage cultures of phosphineresistant and susceptible strains of lesser grain borer, Rhyzopertha dominica to phosphine at a range of concentrations and exposure periods,, J. Stored Prod. Res., 41 (2005), 373. doi: 10.1016/j.jspr.2004.05.002. 
[9] 
P. Eliopoulos, New approaches for tackling Khapra beetle,, CAB Rev., 8 (2013), 1. 
[10]  
[11] 
W. Hermawan, S. Nakajima, R. Tsukuda, K. Fujisaki and F. Nakasuji, Isolation of an antifeedant compound from Andrographis paniculata (Acanthaceae) against the diamond back, Plutella xylostella (Lepidoptera: Yponomeutidae),, Appl. Entomol. Zool, 32 (1997), 551. 
[12] 
M. B. Isman, Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world,, Annu. Rev. Entomol., 51 (2006), 45. doi: 10.1146/annurev.ento.51.110104.151146. 
[13] 
M. B. Isman, C. Machial, S. Miresmailli and L. Bainard, Essential oilbased pesticides: New insights from old chemistry,, in Pesticide Chemistry (WileyVCH, (2007), 201. doi: 10.1002/9783527611249.ch21. 
[14] 
K. Lilford, G. Fulford, D. Schlipalius and A. Ridley, Fumigation of storedgrain insectsa two locus model of phosphine resistance,, in The 18th World IMACS Congress and MODSIM09, (2009). 
[15] 
S. Lowe, M. Browne, S. Boudjelas and M. de Poorter, 100 of the world's worst invasive alien species, The global invasive species database,, in: World Conservation Union, (2000). 
[16] 
G. Nenaah, Toxic and antifeedant activities of potato glycoalkaloids against Trogoderma granarium (Coleoptera: Dermestidae),, J. Stored Prod. Res., 47 (2011), 185. doi: 10.1016/j.jspr.2010.11.003. 
[17] 
G. Nenaah, Chemical composition, insecticidal and repellence activities of essential oils of three Achillea species against the Khapra beetle (Coleoptera: Dermestidae),, J. Pest Sci., 87 (2014), 273. doi: 10.1007/s1034001305471. 
[18] 
G. Nenaah, Chemical composition, toxicity and growth inhibitory activities of essential oils of three Achillea species and their nanoemulsions against Tribolium castaneum (Herbst),, Ind. Crop Prod., 53 (2014), 252. 
[19] 
G. Nenaah and S. Ibrahim, Chemical composition and the insecticidal activity of certain plants applied as powders and essential oils against two storedproducts coleopteran beetles,, J. Pest Sci., 84 (2011), 393. doi: 10.1007/s1034001103545. 
[20] 
P. PretheepKumar, S. Mohan and P. Balasubramanian, Insecticide Resistancestoredproduct,, mechanism and management strategies, (2010). 
[21] 
S. Rajendran, Postharvest pest losses. New York in: Pimentel,, in D. (Ed), (2002). 
[22] 
S. Rajendran and V. Sriranjini, Plant products as fumigants for storedproduct insect control,, J. Stored Prod. Res., 44 (2008), 126. doi: 10.1016/j.jspr.2007.08.003. 
[23] 
C. RegnaultRoger, C. Vincent and J. T. Arnason, Essential oils in insect control: Lowrisk products in a highstakes world,, Annu. Rev. Entomol., 57 (2012), 405. doi: 10.1146/annurevento120710100554. 
[24] 
M. Shi, P. Collins, J. Smith and M. Renton, Individualbased modelling of the efficacy of fumigation tactics to control lesser grain borer (Rhyzopertha dominica) in stored grain,, J. Stored Prod. Res., 51 (2012), 23. doi: 10.1016/j.jspr.2012.06.003. 
[25] 
M. Shi and M. Renton, Modelling mortality of a stored grain insect pest with fumigation: Probit, logistic or Cauchy model?,, Math. Biosci., 243 (2013), 137. doi: 10.1016/j.mbs.2013.02.005. 
[26] 
M. Shi and M. Renton, Numerical algorithms for estimation and calculation of parameters in modelling pest population dynamics and evolution of resistance in modelling pest population dynamics and evolution of resistance,, Math. Biosci., 233 (2011), 77. doi: 10.1016/j.mbs.2011.06.005. 
[27] 
M. Shi, M. Renton, J. RidsdillSmith and P. J. Collins, Constructing a new individualbased model of phosphine resistance in lesser grain borer (Rhyzopertha dominica): do we need to include two loci rather than one?,, J. Pest Sci., 85 (2012), 451. doi: 10.1007/s1034001204216. 
[28] 
R. G. Winks, The toxicity of phosphine to adults of Tribolium castaneum (Herbst): phosphineinduced narcosis,, J. Stored Prod. Res., 21 (1985), 25. doi: 10.1016/0022474X(85)900566. 
[29] 
J. R. Wolberg, Data analysis using the method of least squares,, Extracting the Most Information From Experiments, (2005). 
[1] 
Rong Liu, FengQin Zhang, Yuming Chen. Optimal contraception control for a nonlinear population model with size structure and a separable mortality. Discrete & Continuous Dynamical Systems  B, 2016, 21 (10) : 36033618. doi: 10.3934/dcdsb.2016112 
[2] 
Jun Zhou. Bifurcation analysis of a diffusive plantwrack model with tide effect on the wrack. Mathematical Biosciences & Engineering, 2016, 13 (4) : 857885. doi: 10.3934/mbe.2016021 
[3] 
Guangyu Sui, Meng Fan, Irakli Loladze, Yang Kuang. The dynamics of a stoichiometric plantherbivore model and its discrete analog. Mathematical Biosciences & Engineering, 2007, 4 (1) : 2946. doi: 10.3934/mbe.2007.4.29 
[4] 
Ya Li, Z. Feng. Dynamics of a plantherbivore model with toxininduced functional response. Mathematical Biosciences & Engineering, 2010, 7 (1) : 149169. doi: 10.3934/mbe.2010.7.149 
[5] 
Andrew L. Nevai, Richard R. Vance. The role of leaf height in plant competition for sunlight: analysis of a canopy partitioning model. Mathematical Biosciences & Engineering, 2008, 5 (1) : 101124. doi: 10.3934/mbe.2008.5.101 
[6] 
Lijuan Wang, Hongling Jiang, Ying Li. Positive steady state solutions of a plantpollinator model with diffusion. Discrete & Continuous Dynamical Systems  B, 2015, 20 (6) : 18051819. doi: 10.3934/dcdsb.2015.20.1805 
[7] 
Wenzhen Gan, Peng Zhou. A revisit to the diffusive logistic model with free boundary condition. Discrete & Continuous Dynamical Systems  B, 2016, 21 (3) : 837847. doi: 10.3934/dcdsb.2016.21.837 
[8] 
E. Trofimchuk, Sergei Trofimchuk. Global stability in a regulated logistic growth model. Discrete & Continuous Dynamical Systems  B, 2005, 5 (2) : 461468. doi: 10.3934/dcdsb.2005.5.461 
[9] 
Inácio AndruskiGuimarães, Anselmo ChavesNeto. Estimation in polytomous logistic model: Comparison of methods. Journal of Industrial & Management Optimization, 2009, 5 (2) : 239252. doi: 10.3934/jimo.2009.5.239 
[10] 
Rui Peng, XiaoQiang Zhao. The diffusive logistic model with a free boundary and seasonal succession. Discrete & Continuous Dynamical Systems  A, 2013, 33 (5) : 20072031. doi: 10.3934/dcds.2013.33.2007 
[11] 
John E. Franke, AbdulAziz Yakubu. Periodically forced discretetime SIS epidemic model with disease induced mortality. Mathematical Biosciences & Engineering, 2011, 8 (2) : 385408. doi: 10.3934/mbe.2011.8.385 
[12] 
Suqi Ma, Qishao Lu, Shuli Mei. Dynamics of a logistic population model with maturation delay and nonlinear birth rate. Discrete & Continuous Dynamical Systems  B, 2005, 5 (3) : 735752. doi: 10.3934/dcdsb.2005.5.735 
[13] 
Sanling Yuan, Xuehui Ji, Huaiping Zhu. Asymptotic behavior of a delayed stochastic logistic model with impulsive perturbations. Mathematical Biosciences & Engineering, 2017, 14 (56) : 14771498. doi: 10.3934/mbe.2017077 
[14] 
Xinyue Fan, ClaudeMichel Brauner, Linda Wittkop. Mathematical analysis of a HIV model with quadratic logistic growth term. Discrete & Continuous Dynamical Systems  B, 2012, 17 (7) : 23592385. doi: 10.3934/dcdsb.2012.17.2359 
[15] 
Chuang Xu. Strong Allee effect in a stochastic logistic model with mate limitation and stochastic immigration. Discrete & Continuous Dynamical Systems  B, 2016, 21 (7) : 23212336. doi: 10.3934/dcdsb.2016049 
[16] 
Yihong Du, Zongming Guo. The degenerate logistic model and a singularly mixed boundary blowup problem. Discrete & Continuous Dynamical Systems  A, 2006, 14 (1) : 129. doi: 10.3934/dcds.2006.14.1 
[17] 
Xianhua Tang, Xingfu Zou. A 3/2 stability result for a regulated logistic growth model. Discrete & Continuous Dynamical Systems  B, 2002, 2 (2) : 265278. doi: 10.3934/dcdsb.2002.2.265 
[18] 
Steffen Eikenberry, Sarah Hews, John D. Nagy, Yang Kuang. The dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth. Mathematical Biosciences & Engineering, 2009, 6 (2) : 283299. doi: 10.3934/mbe.2009.6.283 
[19] 
Ricardo LópezRuiz, Danièle FournierPrunaret. Complex Behavior in a Discrete Coupled Logistic Model for the Symbiotic Interaction of Two Species. Mathematical Biosciences & Engineering, 2004, 1 (2) : 307324. doi: 10.3934/mbe.2004.1.307 
[20] 
Markus Thäter, Kurt Chudej, Hans Josef Pesch. Optimal vaccination strategies for an SEIR model of infectious diseases with logistic growth. Mathematical Biosciences & Engineering, 2018, 15 (2) : 485505. doi: 10.3934/mbe.2018022 
2016 Impact Factor: 1.035
Tools
Metrics
Other articles
by authors
[Back to Top]