2015, 12(4): 643-660. doi: 10.3934/mbe.2015.12.643

The evolutionary dynamics of a population model with a strong Allee effect

1. 

Department of Mathematics, Interdisciplinary Program in Applied Mathematics, 617 N Santa Rita, Tucson, Arizona, 85721, United States

Received  May 2014 Revised  September 2014 Published  April 2015

An evolutionary game theoretic model for a population subject to predation and a strong Allee threshold of extinction is analyzed using, among other methods, Poincaré-Bendixson theory. The model is a nonlinear, plane autonomous system whose state variables are population density and the mean of a phenotypic trait, which is subject to Darwinian evolution, that determines the population's inherent (low density) growth rate (fitness). A trade-off is assumed in that an increase in the inherent growth rate results in a proportional increase in the predator's attack rate. The main results are that orbits equilibrate (there are no cycles or cycle chains of saddles), that the extinction set (or Allee basin) shrinks when evolution occurs, and that the meant trait component of survival equilibria occur at maxima of the inherent growth rate (as a function of the trait).
Citation: Jim M. Cushing. The evolutionary dynamics of a population model with a strong Allee effect. Mathematical Biosciences & Engineering, 2015, 12 (4) : 643-660. doi: 10.3934/mbe.2015.12.643
References:
[1]

P. A. Abrams, Modelling the adaptive dynamics of traits involved in inter- and intraspecific interactions: An assessment of three methods,, Ecology Letters, 4 (2001), 166. doi: 10.1046/j.1461-0248.2001.00199.x.

[2]

W. C. Allee, Animal Aggregations, a Study in General Sociology,, University of Chicago Press, (1931).

[3]

W. C. Allee, The Social Life of Animals,, 3rd edition, (1941).

[4]

W. C. Allee, O. Park, T. Park and K. Schmidt, Principles of Animal Ecology,, W. B. Saunders Company, (1949).

[5]

D. S. Boukal and L. Berec, Single-species Models of the Allee effect: Extinction boundaries, sex Ratios and mate Encounters,, Journal of Theoretical Biology, 218 (2002), 375. doi: 10.1006/jtbi.2002.3084.

[6]

F. Courchamp, T. Clutton-Brock and B. Grenfell, Inverse density dependence and the Allee effect,, TREE, 14 (1999), 405. doi: 10.1016/S0169-5347(99)01683-3.

[7]

F. Courchamp, L. Berec and J. Gascoigne, Allee Effects in Ecology and Conservation,, Oxford University Press, (2008). doi: 10.1093/acprof:oso/9780198570301.001.0001.

[8]

J. M. Cushing, Backward bifurcations and strong Allee effects in matrix models for the dynamics of structured populations,, Journal of Biological Dynamics, 8 (2014), 57. doi: 10.1080/17513758.2014.899638.

[9]

J. M. Cushing and J. Hudson, Evolutionary dynamics and strong Allee effects,, Journal of Biological Dynamics, 6 (2012), 941. doi: 10.1080/17513758.2012.697196.

[10]

B. Dennis, Allee effects: Population growth, critical density, and the chance of extinction,, Natural Resource Modeling, 3 (1989), 481.

[11]

F. Dercole and S. Rinaldi, Analysis of Evolutionary Processes: The Adaptive Dynamics Approach and Its Applications,, Princeton University Press, (2008).

[12]

L. Edelstein-Keshet, Mathematical Models in Biology,, Classics in Applied Mathematics 46, (2005). doi: 10.1137/1.9780898719147.

[13]

S. N. Elaydi and R. J. Sacker, Population models with Allee effect: A new model,, Journal of Biological Dynamics , 4 (2010), 397. doi: 10.1080/17513750903377434.

[14]

D. S. Falconer and T. F. C. Mackay, Introduction to Quantitative Genetics,, Pearson Education Limited, (1996).

[15]

F. A. Hopf and F. W. Hopf, The role of the Allee effect in species packing,, Theoretical Population Biology, 27 (1985), 27. doi: 10.1016/0040-5809(85)90014-0.

[16]

M. R. S. Kulenovic and A.-A. Yakubu, Compensatory versus overcompensatory dynamics in density-dependent leslie models,, Journal of Difference Equations and Applications, 10 (2004), 1251. doi: 10.1080/10236190410001652711.

[17]

R. Lande, Natural selection and random genetic drift in phenotypic evolution,, Evolution, 30 (1976), 314.

[18]

R. Lande, A quantitative genetic theory of life history evolution,, Ecology, 63 (1982), 607.

[19]

M. A. Lewis and P. Kareiva, Allee dynamics and the spread of invading organisms,, Theoretical Population Biology, 43 (1993), 141. doi: 10.1006/tpbi.1993.1007.

[20]

J. Lush, Animal Breeding Plans,, Iowa State College Press, (1937).

[21]

S. P. Otto and T. Day, A Biologist's Guide to Mathematical Modeling in Ecology and Evolution,, Princeton University Press, (2007).

[22]

I. Scheuring, Allee effect increases dynamical stability in populations,, Journal of Theoretical Biology, 199 (1999), 407. doi: 10.1006/jtbi.1999.0966.

[23]

S. J. Schreiber, Allee effects, extinctions, and chaotic transients in simple population models,, Theoretical Population Biology, 64 (2003), 201. doi: 10.1016/S0040-5809(03)00072-8.

[24]

T. L. Vincent and J. S. Brown, Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics,, Cambridge University Press, (2005). doi: 10.1017/CBO9780511542633.

[25]

G. Wang, X.-G. Liang and F.-Z. Wang, The competitive dynamics of populations subject to an Allee effect,, Ecological Modelling, 124 (1999), 183. doi: 10.1016/S0304-3800(99)00160-X.

show all references

References:
[1]

P. A. Abrams, Modelling the adaptive dynamics of traits involved in inter- and intraspecific interactions: An assessment of three methods,, Ecology Letters, 4 (2001), 166. doi: 10.1046/j.1461-0248.2001.00199.x.

[2]

W. C. Allee, Animal Aggregations, a Study in General Sociology,, University of Chicago Press, (1931).

[3]

W. C. Allee, The Social Life of Animals,, 3rd edition, (1941).

[4]

W. C. Allee, O. Park, T. Park and K. Schmidt, Principles of Animal Ecology,, W. B. Saunders Company, (1949).

[5]

D. S. Boukal and L. Berec, Single-species Models of the Allee effect: Extinction boundaries, sex Ratios and mate Encounters,, Journal of Theoretical Biology, 218 (2002), 375. doi: 10.1006/jtbi.2002.3084.

[6]

F. Courchamp, T. Clutton-Brock and B. Grenfell, Inverse density dependence and the Allee effect,, TREE, 14 (1999), 405. doi: 10.1016/S0169-5347(99)01683-3.

[7]

F. Courchamp, L. Berec and J. Gascoigne, Allee Effects in Ecology and Conservation,, Oxford University Press, (2008). doi: 10.1093/acprof:oso/9780198570301.001.0001.

[8]

J. M. Cushing, Backward bifurcations and strong Allee effects in matrix models for the dynamics of structured populations,, Journal of Biological Dynamics, 8 (2014), 57. doi: 10.1080/17513758.2014.899638.

[9]

J. M. Cushing and J. Hudson, Evolutionary dynamics and strong Allee effects,, Journal of Biological Dynamics, 6 (2012), 941. doi: 10.1080/17513758.2012.697196.

[10]

B. Dennis, Allee effects: Population growth, critical density, and the chance of extinction,, Natural Resource Modeling, 3 (1989), 481.

[11]

F. Dercole and S. Rinaldi, Analysis of Evolutionary Processes: The Adaptive Dynamics Approach and Its Applications,, Princeton University Press, (2008).

[12]

L. Edelstein-Keshet, Mathematical Models in Biology,, Classics in Applied Mathematics 46, (2005). doi: 10.1137/1.9780898719147.

[13]

S. N. Elaydi and R. J. Sacker, Population models with Allee effect: A new model,, Journal of Biological Dynamics , 4 (2010), 397. doi: 10.1080/17513750903377434.

[14]

D. S. Falconer and T. F. C. Mackay, Introduction to Quantitative Genetics,, Pearson Education Limited, (1996).

[15]

F. A. Hopf and F. W. Hopf, The role of the Allee effect in species packing,, Theoretical Population Biology, 27 (1985), 27. doi: 10.1016/0040-5809(85)90014-0.

[16]

M. R. S. Kulenovic and A.-A. Yakubu, Compensatory versus overcompensatory dynamics in density-dependent leslie models,, Journal of Difference Equations and Applications, 10 (2004), 1251. doi: 10.1080/10236190410001652711.

[17]

R. Lande, Natural selection and random genetic drift in phenotypic evolution,, Evolution, 30 (1976), 314.

[18]

R. Lande, A quantitative genetic theory of life history evolution,, Ecology, 63 (1982), 607.

[19]

M. A. Lewis and P. Kareiva, Allee dynamics and the spread of invading organisms,, Theoretical Population Biology, 43 (1993), 141. doi: 10.1006/tpbi.1993.1007.

[20]

J. Lush, Animal Breeding Plans,, Iowa State College Press, (1937).

[21]

S. P. Otto and T. Day, A Biologist's Guide to Mathematical Modeling in Ecology and Evolution,, Princeton University Press, (2007).

[22]

I. Scheuring, Allee effect increases dynamical stability in populations,, Journal of Theoretical Biology, 199 (1999), 407. doi: 10.1006/jtbi.1999.0966.

[23]

S. J. Schreiber, Allee effects, extinctions, and chaotic transients in simple population models,, Theoretical Population Biology, 64 (2003), 201. doi: 10.1016/S0040-5809(03)00072-8.

[24]

T. L. Vincent and J. S. Brown, Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics,, Cambridge University Press, (2005). doi: 10.1017/CBO9780511542633.

[25]

G. Wang, X.-G. Liang and F.-Z. Wang, The competitive dynamics of populations subject to an Allee effect,, Ecological Modelling, 124 (1999), 183. doi: 10.1016/S0304-3800(99)00160-X.

[1]

Eduardo Liz, Alfonso Ruiz-Herrera. Delayed population models with Allee effects and exploitation. Mathematical Biosciences & Engineering, 2015, 12 (1) : 83-97. doi: 10.3934/mbe.2015.12.83

[2]

Astridh Boccabella, Roberto Natalini, Lorenzo Pareschi. On a continuous mixed strategies model for evolutionary game theory. Kinetic & Related Models, 2011, 4 (1) : 187-213. doi: 10.3934/krm.2011.4.187

[3]

Anna Lisa Amadori, Astridh Boccabella, Roberto Natalini. A hyperbolic model of spatial evolutionary game theory. Communications on Pure & Applied Analysis, 2012, 11 (3) : 981-1002. doi: 10.3934/cpaa.2012.11.981

[4]

Alex Potapov, Ulrike E. Schlägel, Mark A. Lewis. Evolutionarily stable diffusive dispersal. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3319-3340. doi: 10.3934/dcdsb.2014.19.3319

[5]

Dianmo Li, Zhen Zhang, Zufei Ma, Baoyu Xie, Rui Wang. Allee effect and a catastrophe model of population dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 629-634. doi: 10.3934/dcdsb.2004.4.629

[6]

Sophia R.-J. Jang. Allee effects in an iteroparous host population and in host-parasitoid interactions. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 113-135. doi: 10.3934/dcdsb.2011.15.113

[7]

William H. Sandholm. Local stability of strict equilibria under evolutionary game dynamics. Journal of Dynamics & Games, 2014, 1 (3) : 485-495. doi: 10.3934/jdg.2014.1.485

[8]

J. Leonel Rocha, Danièle Fournier-Prunaret, Abdel-Kaddous Taha. Strong and weak Allee effects and chaotic dynamics in Richards' growths. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2397-2425. doi: 10.3934/dcdsb.2013.18.2397

[9]

Yun Kang, Sourav Kumar Sasmal, Amiya Ranjan Bhowmick, Joydev Chattopadhyay. Dynamics of a predator-prey system with prey subject to Allee effects and disease. Mathematical Biosciences & Engineering, 2014, 11 (4) : 877-918. doi: 10.3934/mbe.2014.11.877

[10]

Jia Li. Modeling of mosquitoes with dominant or recessive Transgenes and Allee effects. Mathematical Biosciences & Engineering, 2010, 7 (1) : 99-121. doi: 10.3934/mbe.2010.7.99

[11]

Erika T. Camacho, Christopher M. Kribs-Zaleta, Stephen Wirkus. Metering effects in population systems. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1365-1379. doi: 10.3934/mbe.2013.10.1365

[12]

Caichun Chai, Tiaojun Xiao, Eilin Francis. Is social responsibility for firms competing on quantity evolutionary stable?. Journal of Industrial & Management Optimization, 2018, 14 (1) : 325-347. doi: 10.3934/jimo.2017049

[13]

Mehdi Badra. Abstract settings for stabilization of nonlinear parabolic system with a Riccati-based strategy. Application to Navier-Stokes and Boussinesq equations with Neumann or Dirichlet control. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1169-1208. doi: 10.3934/dcds.2012.32.1169

[14]

Donald L. DeAngelis, Bo Zhang. Effects of dispersal in a non-uniform environment on population dynamics and competition: A patch model approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3087-3104. doi: 10.3934/dcdsb.2014.19.3087

[15]

Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics & Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537

[16]

Scott G. McCalla. Paladins as predators: Invasive waves in a spatial evolutionary adversarial game. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1437-1457. doi: 10.3934/dcdsb.2014.19.1437

[17]

John Cleveland. Basic stage structure measure valued evolutionary game model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 291-310. doi: 10.3934/mbe.2015.12.291

[18]

Sophia R.-J. Jang. Discrete host-parasitoid models with Allee effects and age structure in the host. Mathematical Biosciences & Engineering, 2010, 7 (1) : 67-81. doi: 10.3934/mbe.2010.7.67

[19]

Yongli Cai, Malay Banerjee, Yun Kang, Weiming Wang. Spatiotemporal complexity in a predator--prey model with weak Allee effects. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1247-1274. doi: 10.3934/mbe.2014.11.1247

[20]

Atul Narang, Sergei S. Pilyugin. Toward an Integrated Physiological Theory of Microbial Growth: From Subcellular Variables to Population Dynamics. Mathematical Biosciences & Engineering, 2005, 2 (1) : 169-206. doi: 10.3934/mbe.2005.2.169

2016 Impact Factor: 1.035

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]