American Institute of Mathematical Sciences

2014, 19(10): 3397-3432. doi: 10.3934/dcdsb.2014.19.3397

Evolution of mobility in predator-prey systems

 1 Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada, Canada 2 Biology Centre ASCR, Institute of Entomology and Department of Mathematics and Biomathematics, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic

Received  June 2013 Revised  October 2013 Published  October 2014

We investigate the dynamics of a predator-prey system with the assumption that both prey and predators use game theory-based strategies to maximize their per capita population growth rates. The predators adjust their strategies in order to catch more prey per unit time, while the prey, on the other hand, adjust their reactions to minimize the chances of being caught. We assume each individual is either mobile or sessile and investigate the evolution of mobility for each species in the predator-prey system. When the underlying population dynamics is of the Lotka-Volterra type, we show that strategies evolve to the equilibrium predicted by evolutionary game theory and that population sizes approach their corresponding stable equilibrium (i.e. strategy and population effects can be analyzed separately). This is no longer the case when population dynamics is based on the Holling II functional response, although the strategic analysis still provides a valuable intuition into the long term outcome. Numerical simulation results indicate that, for some parameter values, the system has chaotic behavior. Our investigation reveals the relationship between the game theory-based reactions of prey and predators, and their population changes.
Citation: Fei Xu, Ross Cressman, Vlastimil Křivan. Evolution of mobility in predator-prey systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3397-3432. doi: 10.3934/dcdsb.2014.19.3397
References:
 [1] P. A. Abrams, Foraging time optimization and interactions in food webs,, Am Nat, 124 (1984), 80. doi: 10.1086/284253. [2] P. A. Abrams, The impact of habitat selection on the heterogeneity of resources in varying environments,, Ecol, 81 (2000), 2902. doi: 10.2307/177350. [3] P. A. Abrams, Habitat choice in predator-prey systems: Spatial instability due to interacting adaptive movements,, Am Nat, 169 (2007), 581. doi: 10.1086/512688. [4] P. A. Abrams, R. Cressman and V. Křivan, The role of behavioral dynamics in determining the patch distributions of interacting species,, Am Nat, 169 (2007), 505. doi: 10.1086/511963. [5] K. Argasinski, Dynamic multipopulation and density dependent evolutionary games related to replicator dynamics. A metasimplex concept,, Math Biosci, 202 (2006), 88. doi: 10.1016/j.mbs.2006.04.007. [6] L. Arnold, W. Horsthemke and J. W. Stucki, The influence of external real and white noise on the Lotka-Volterra model,, Biom. J., 21 (1979), 451. doi: 10.1002/bimj.4710210507. [7] J. S. Brown and B. P. Kotler, Hazardous duty pay and the foraging cost of predation,, Ecol Lett, 7 (2004), 999. doi: 10.1111/j.1461-0248.2004.00661.x. [8] J. S. Brown, J. W. Laundré and M. Gurung, The ecology of fear: Optimal foraging, game theory, and trophic interactions,, J Mammal, 80 (1999), 385. doi: 10.2307/1383287. [9] E. L. Charnov, Optimal foraging: Attack strategy of a mantid,, Am Nat, 110 (1976), 141. doi: 10.1086/283054. [10] R. Cressman, Evolutionary Dynamics and Extensive Form Games,, MIT Press, (2003). [11] R. Cressman and J. Garay, The effects of opportunistic and intentional predators on the herding behavior of prey,, Ecol, 92 (2011), 432. doi: 10.1890/10-0199.1. [12] R. Cressman and V. Křivan, Two-patch population models with adaptive dispersal: The effects of varying dispersal speeds,, J Math Biol, 67 (2013), 329. doi: 10.1007/s00285-012-0548-3. [13] M. M. Dehn, Vigilance for predators: Detection and dilution effects,, Behav. Ecol. Sociobiol., 26 (1990), 337. [14] F. Dercole and S. Rinaldi, Analysis of Evolutionary Processes,, Princeton University Press, (2008). [15] U. Dieckmann and R. Law, The dynamical theory of coevolution: A derivation from stochastic ecological processes,, J. Math. Biol., 34 (1996), 579. doi: 10.1007/BF02409751. [16] W. A. Foster and J. E. Treherne, Evidence for the dilution effect in the selfish herd from fish predation on a marine insect,, Nature, 293 (1981), 466. doi: 10.1038/293466a0. [17] D. Fudenberg and D. K. Levine, The Theory of Learning in Games,, MIT Press, (1998). [18] G. F. Gause, The Struggle for Existence,, Williams and Wilkins, (1934). doi: 10.1097/00010694-193602000-00018. [19] S. A. H. Geritz, É. Kisdi, G. Meszéna and J. A. J. Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree,, Evol. Ecol., 12 (1998), 35. [20] J. Hofbauer and E. Hopkins, Learning in perturbed asymmetric games,, Games Econ Behav, 52 (2005), 133. doi: 10.1016/j.geb.2004.06.006. [21] J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical Systems,, Cambridge University Press, (1988). [22] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics,, Cambridge University Press, (1998). doi: 10.1017/CBO9781139173179. [23] C. S. Holling, Some characteristics of simple types of predation and parasitism,, Can. Entomol., 91 (1959), 385. doi: 10.4039/Ent91385-7. [24] R. Huey and E. R. Pianka, Ecological consequences of foraging mode,, Ecol, 62 (1981), 991. doi: 10.2307/1936998. [25] V. Křivan, Optimal foraging and predator-prey dynamics,, Theor Popul Biol, 49 (1996), 265. [26] V. Křivan, The Lotka-Volterra predator-prey model with foraging-predation risk trade-offs,, Am Nat, 170 (2007), 771. [27] V. Křivan and E. Sirot, Habitat selection by two competing species in a two-habitat environment,, Am Nat, 160 (2002), 214. [28] J. H. Lü, G. R. Chen and S. C. Zhang, Dynamical analysis of a new chaotic attractor,, Int. J. Bifur. Chaos Appl. Sci. Eng., 12 (2002), 1001. [29] R. H. MacArthur and E. R. Pianka, On optimal use of a patchy environment,, Am Nat, 100 (1966), 603. doi: 10.1086/282454. [30] M. Parker and A. Kamenev, Mean extinction time in predator-prey model,, J Stat Phys, 141 (2010), 201. doi: 10.1007/s10955-010-0049-y. [31] M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predator-prey interactions,, Am Nat, 97 (1963), 209. doi: 10.1086/282272. [32] L. Samuelson and J. Zhang, Evolutionary stability in asymmetric games,, J. Econ. Theory, 57 (1992), 363. doi: 10.1016/0022-0531(92)90041-F. [33] I. Scharf, E. Nulman, O. Ovadia and A. Bouskila, Efficiency evaluation of two competing foraging modes under different conditions,, Am Nat, 168 (2006), 350. doi: 10.1086/506921. [34] O. J. Schmitz, Behavior of predators and prey and links with population level processes., In Ecology of Predator-Prey Interactions (eds. P. Barbosa and I. Castellanos ), (2005), 256. [35] O. J. Schmitz, V. Křivan and O. Ovadia, Trophic cascades: The primacy of trait-mediated indirect interactions,, Ecol Lett, 7 (2004), 153. doi: 10.1111/j.1461-0248.2003.00560.x. [36] T. W. Schoener, Theory of feeding strategies,, Annu Rev Ecol Syst, 2 (1971), 369. doi: 10.1146/annurev.es.02.110171.002101. [37] J. G. Skellam, The mathematical foundations underlying the use of line transects in animal ecology,, Biometrics, 14 (1958), 385. doi: 10.2307/2527881. [38] D. W. Stephens and J. R. Krebs, Foraging Theory,, Princeton University Press, (1986). [39] T. L. Vincent and J. S. Brown, Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics,, Cambridge University Press, (2005). doi: 10.1017/CBO9780511542633. [40] E. E. Werner and B. R. Anholt, Ecological consequences of the trade-off between growth and mortality rates mediated by foraging activity,, Am Nat, 142 (1993), 242. doi: 10.1086/285537. [41] W. B. Yapp, The theory of line transects,, Bird Study, 3 (1956), 93. doi: 10.1080/00063655609475840.

show all references

References:
 [1] P. A. Abrams, Foraging time optimization and interactions in food webs,, Am Nat, 124 (1984), 80. doi: 10.1086/284253. [2] P. A. Abrams, The impact of habitat selection on the heterogeneity of resources in varying environments,, Ecol, 81 (2000), 2902. doi: 10.2307/177350. [3] P. A. Abrams, Habitat choice in predator-prey systems: Spatial instability due to interacting adaptive movements,, Am Nat, 169 (2007), 581. doi: 10.1086/512688. [4] P. A. Abrams, R. Cressman and V. Křivan, The role of behavioral dynamics in determining the patch distributions of interacting species,, Am Nat, 169 (2007), 505. doi: 10.1086/511963. [5] K. Argasinski, Dynamic multipopulation and density dependent evolutionary games related to replicator dynamics. A metasimplex concept,, Math Biosci, 202 (2006), 88. doi: 10.1016/j.mbs.2006.04.007. [6] L. Arnold, W. Horsthemke and J. W. Stucki, The influence of external real and white noise on the Lotka-Volterra model,, Biom. J., 21 (1979), 451. doi: 10.1002/bimj.4710210507. [7] J. S. Brown and B. P. Kotler, Hazardous duty pay and the foraging cost of predation,, Ecol Lett, 7 (2004), 999. doi: 10.1111/j.1461-0248.2004.00661.x. [8] J. S. Brown, J. W. Laundré and M. Gurung, The ecology of fear: Optimal foraging, game theory, and trophic interactions,, J Mammal, 80 (1999), 385. doi: 10.2307/1383287. [9] E. L. Charnov, Optimal foraging: Attack strategy of a mantid,, Am Nat, 110 (1976), 141. doi: 10.1086/283054. [10] R. Cressman, Evolutionary Dynamics and Extensive Form Games,, MIT Press, (2003). [11] R. Cressman and J. Garay, The effects of opportunistic and intentional predators on the herding behavior of prey,, Ecol, 92 (2011), 432. doi: 10.1890/10-0199.1. [12] R. Cressman and V. Křivan, Two-patch population models with adaptive dispersal: The effects of varying dispersal speeds,, J Math Biol, 67 (2013), 329. doi: 10.1007/s00285-012-0548-3. [13] M. M. Dehn, Vigilance for predators: Detection and dilution effects,, Behav. Ecol. Sociobiol., 26 (1990), 337. [14] F. Dercole and S. Rinaldi, Analysis of Evolutionary Processes,, Princeton University Press, (2008). [15] U. Dieckmann and R. Law, The dynamical theory of coevolution: A derivation from stochastic ecological processes,, J. Math. Biol., 34 (1996), 579. doi: 10.1007/BF02409751. [16] W. A. Foster and J. E. Treherne, Evidence for the dilution effect in the selfish herd from fish predation on a marine insect,, Nature, 293 (1981), 466. doi: 10.1038/293466a0. [17] D. Fudenberg and D. K. Levine, The Theory of Learning in Games,, MIT Press, (1998). [18] G. F. Gause, The Struggle for Existence,, Williams and Wilkins, (1934). doi: 10.1097/00010694-193602000-00018. [19] S. A. H. Geritz, É. Kisdi, G. Meszéna and J. A. J. Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree,, Evol. Ecol., 12 (1998), 35. [20] J. Hofbauer and E. Hopkins, Learning in perturbed asymmetric games,, Games Econ Behav, 52 (2005), 133. doi: 10.1016/j.geb.2004.06.006. [21] J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical Systems,, Cambridge University Press, (1988). [22] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics,, Cambridge University Press, (1998). doi: 10.1017/CBO9781139173179. [23] C. S. Holling, Some characteristics of simple types of predation and parasitism,, Can. Entomol., 91 (1959), 385. doi: 10.4039/Ent91385-7. [24] R. Huey and E. R. Pianka, Ecological consequences of foraging mode,, Ecol, 62 (1981), 991. doi: 10.2307/1936998. [25] V. Křivan, Optimal foraging and predator-prey dynamics,, Theor Popul Biol, 49 (1996), 265. [26] V. Křivan, The Lotka-Volterra predator-prey model with foraging-predation risk trade-offs,, Am Nat, 170 (2007), 771. [27] V. Křivan and E. Sirot, Habitat selection by two competing species in a two-habitat environment,, Am Nat, 160 (2002), 214. [28] J. H. Lü, G. R. Chen and S. C. Zhang, Dynamical analysis of a new chaotic attractor,, Int. J. Bifur. Chaos Appl. Sci. Eng., 12 (2002), 1001. [29] R. H. MacArthur and E. R. Pianka, On optimal use of a patchy environment,, Am Nat, 100 (1966), 603. doi: 10.1086/282454. [30] M. Parker and A. Kamenev, Mean extinction time in predator-prey model,, J Stat Phys, 141 (2010), 201. doi: 10.1007/s10955-010-0049-y. [31] M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predator-prey interactions,, Am Nat, 97 (1963), 209. doi: 10.1086/282272. [32] L. Samuelson and J. Zhang, Evolutionary stability in asymmetric games,, J. Econ. Theory, 57 (1992), 363. doi: 10.1016/0022-0531(92)90041-F. [33] I. Scharf, E. Nulman, O. Ovadia and A. Bouskila, Efficiency evaluation of two competing foraging modes under different conditions,, Am Nat, 168 (2006), 350. doi: 10.1086/506921. [34] O. J. Schmitz, Behavior of predators and prey and links with population level processes., In Ecology of Predator-Prey Interactions (eds. P. Barbosa and I. Castellanos ), (2005), 256. [35] O. J. Schmitz, V. Křivan and O. Ovadia, Trophic cascades: The primacy of trait-mediated indirect interactions,, Ecol Lett, 7 (2004), 153. doi: 10.1111/j.1461-0248.2003.00560.x. [36] T. W. Schoener, Theory of feeding strategies,, Annu Rev Ecol Syst, 2 (1971), 369. doi: 10.1146/annurev.es.02.110171.002101. [37] J. G. Skellam, The mathematical foundations underlying the use of line transects in animal ecology,, Biometrics, 14 (1958), 385. doi: 10.2307/2527881. [38] D. W. Stephens and J. R. Krebs, Foraging Theory,, Princeton University Press, (1986). [39] T. L. Vincent and J. S. Brown, Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics,, Cambridge University Press, (2005). doi: 10.1017/CBO9780511542633. [40] E. E. Werner and B. R. Anholt, Ecological consequences of the trade-off between growth and mortality rates mediated by foraging activity,, Am Nat, 142 (1993), 242. doi: 10.1086/285537. [41] W. B. Yapp, The theory of line transects,, Bird Study, 3 (1956), 93. doi: 10.1080/00063655609475840.
 [1] Jinfeng Wang, Hongxia Fan. Dynamics in a Rosenzweig-Macarthur predator-prey system with quiescence. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 909-918. doi: 10.3934/dcdsb.2016.21.909 [2] Xiaoli Liu, Dongmei Xiao. Bifurcations in a discrete time Lotka-Volterra predator-prey system. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 559-572. doi: 10.3934/dcdsb.2006.6.559 [3] S. Nakaoka, Y. Saito, Y. Takeuchi. Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Mathematical Biosciences & Engineering, 2006, 3 (1) : 173-187. doi: 10.3934/mbe.2006.3.173 [4] Michael Y. Li, Xihui Lin, Hao Wang. Global Hopf branches and multiple limit cycles in a delayed Lotka-Volterra predator-prey model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 747-760. doi: 10.3934/dcdsb.2014.19.747 [5] Rui Xu, M.A.J. Chaplain, F.A. Davidson. Periodic solutions of a discrete nonautonomous Lotka-Volterra predator-prey model with time delays. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 823-831. doi: 10.3934/dcdsb.2004.4.823 [6] Yuzo Hosono. Traveling waves for the Lotka-Volterra predator-prey system without diffusion of the predator. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 161-171. doi: 10.3934/dcdsb.2015.20.161 [7] Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065 [8] Wei Feng, Nicole Rocco, Michael Freeze, Xin Lu. Mathematical analysis on an extended Rosenzweig-MacArthur model of tri-trophic food chain. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1215-1230. doi: 10.3934/dcdss.2014.7.1215 [9] P. Auger, N. H. Du, N. T. Hieu. Evolution of Lotka-Volterra predator-prey systems under telegraph noise. Mathematical Biosciences & Engineering, 2009, 6 (4) : 683-700. doi: 10.3934/mbe.2009.6.683 [10] Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129 [11] Wei Feng, Jody Hinson. Stability and pattern in two-patch predator-prey population dynamics. Conference Publications, 2005, 2005 (Special) : 268-279. doi: 10.3934/proc.2005.2005.268 [12] Xiao He, Sining Zheng. Protection zone in a modified Lotka-Volterra model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2027-2038. doi: 10.3934/dcdsb.2015.20.2027 [13] Liang Zhang, Zhi-Cheng Wang. Spatial dynamics of a diffusive predator-prey model with stage structure. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1831-1853. doi: 10.3934/dcdsb.2015.20.1831 [14] H. W. Broer, K. Saleh, V. Naudot, R. Roussarie. Dynamics of a predator-prey model with non-monotonic response function. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 221-251. doi: 10.3934/dcds.2007.18.221 [15] Sílvia Cuadrado. Stability of equilibria of a predator-prey model of phenotype evolution. Mathematical Biosciences & Engineering, 2009, 6 (4) : 701-718. doi: 10.3934/mbe.2009.6.701 [16] Antoni Leon Dawidowicz, Anna Poskrobko. Stability problem for the age-dependent predator-prey model. Evolution Equations & Control Theory, 2018, 7 (1) : 79-93. doi: 10.3934/eect.2018005 [17] Shuling Yan, Shangjiang Guo. Dynamics of a Lotka-Volterra competition-diffusion model with stage structure and spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1559-1579. doi: 10.3934/dcdsb.2018059 [18] Peter A. Braza. A dominant predator, a predator, and a prey. Mathematical Biosciences & Engineering, 2008, 5 (1) : 61-73. doi: 10.3934/mbe.2008.5.61 [19] Yoshiaki Muroya. A Lotka-Volterra system with patch structure (related to a multi-group SI epidemic model). Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 999-1008. doi: 10.3934/dcdss.2015.8.999 [20] Peng Feng. On a diffusive predator-prey model with nonlinear harvesting. Mathematical Biosciences & Engineering, 2014, 11 (4) : 807-821. doi: 10.3934/mbe.2014.11.807

2016 Impact Factor: 0.994