2014, 19(10): 3299-3317. doi: 10.3934/dcdsb.2014.19.3299

The dynamics of technological change under constraints: Adopters and resources

1. 

Departamento de Matemáticas Aplicadas y Sistemas, DMAS, Universidad Autónoma Metropolitana, Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Cuajimalpa de Morelos, 05300, México, D.F., Mexico

2. 

Instituto de Matemáticas, Universidad Nacional Autónoma de México, Boulevard Juriquilla No. 3001, Juriquilla, 76230, Mexico

3. 

Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago 6513677, Chile

Received  July 2013 Revised  April 2014 Published  October 2014

We present a mathematical model for a technology cycle that centers its attention on the coexistence mechanisms of competing technologies. We use a biological analogy to couple the adoption of a technology with the provision of financial resources. In our model financial resources are limited and provided at a constant rate. There are two variants analyzed in this work, the first considers the so-called internal innovation and the second introduces external innovation. We make use of the adaptive dynamics framework to explain the persistence of closely related technologies as opposed to the usual competitive exclusion of all but one dominant technology. For internal innovation the existence of a resource remanent in the full adoption case does not always lead to competitive exclusion; otherwise with the external innovation the resident technology can not be displaced. The paper illustrates the persistence of closely related technologies and the competitive exclusion in renewable energy technologies and TV sets respectively.
Citation: M. Núñez-López, J. X. Velasco-Hernández, P. A. Marquet. The dynamics of technological change under constraints: Adopters and resources. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3299-3317. doi: 10.3934/dcdsb.2014.19.3299
References:
[1]

P. Anderson and M. L. Tushman, Technological discontinuities and dominant design: A cycle model of technological change,, Administrative Science Quartely, 35 (1990), 604.

[2]

F. Bass, A new product growth model for consumer durables,, Management Science, 50 (2004), 1825. doi: 10.1287/mnsc.1040.0264.

[3]

W. E. Bijker and T. P. Pinch, The Social Construction of Technological Systems: New Directions in the Sociology and History of Technology,, MIT Press, (1989).

[4]

C. M. Christensen, The Innovators Dilemma: When New Technologies Cause Great Firms to Fail,, Harvard Business School Press Boston, (1989).

[5]

C. W. Clark, Mathematical Bioeconomics: The Optimal Management of Environmental Resources,, John Wiley and Sons, (1990).

[6]

D. T. Coe, E. Helpman and A. W. Hoffmaister, North-South R & D spillovers,, The Economic Journal, 107 (1997), 134. doi: 10.3386/w5048.

[7]

F. Dercole, U. Dieckmann, M. Obersteiner and S. Rinaldi, Adaptive dynamics and technological change,, Technovation, 28 (2008), 335. doi: 10.1016/j.technovation.2007.11.004.

[8]

T. Devezas and J. Corredine, The biological determinants of long-wave behavior in socioeconomic growth and development,, Technol. Forecast. Soc. Chang., 68 (2001), 1. doi: 10.1016/S0040-1625(01)00136-6.

[9]

U. Dieckmann and R. Law, The dynamical theory of coevolution: A derivation from stochastic ecological processes,, J. Math. Biol., 34 (1996), 579. doi: 10.1007/BF02409751.

[10]

O. Diekmann, A beginners guide to adaptive dynamics,, Mathematical Modelling of Population Dynamics, 63 (2004), 47.

[11]

G. Dosi, Technological paradigms and technological trajectories,, Research Policy, 11 (1982), 147. doi: 10.1016/0048-7333(82)90016-6.

[12]

J. Fisher and R. Pry, A simple substitution model of technological change,, Technol. Forecast. Soc. Chang., 3 (1971), 75. doi: 10.1016/S0040-1625(71)80005-7.

[13]

C. Freeman and C. Pérez, Structural Crises of Adjustment, Business Cycles and Investment Behaviour,, in Technical Change and Economic Theory (eds. Dosi et. al.), (1998).

[14]

G. George, Slack resources and the performance of privately held firms,, Academy of Management Journal, 48 (2005), 661. doi: 10.5465/AMJ.2005.17843944.

[15]

A. Grübler, Technology and Global Change,, The Press Syndicate of the University of Cambridge, (1998).

[16]

R. Henderson, A. B. Jaffe and M. Trajtenberg, Universities as a source of commercial technology: A detailed analysis of university patenting, 1965-1988,, Review of Economics and Statistics, 80 (1998), 119. doi: 10.1162/003465398557221.

[17]

G. Z. Hu Albert and A. B. Jaffe, Patent citations and international knowledge flow: The cases of Korea and Taiwan,, International Journal of Industrial Organization, 21 (2005), 849.

[18]

A. B. Jaffe and M. Trajtenberg, International knowledge flows: Evidence from patent citations,, Economics of Innovation and New Technology, 8 (1999), 105. doi: 10.3386/w6507.

[19]

A. B. Jaffe, M. Trajtenberg, S. Michael and Fogarty, Knowledge spillovers and patent citations: Evidence from a survey of inventors,, American Economic Review, 90 (2000), 215. doi: 10.1257/aer.90.2.215.

[20]

A. B. Jaffe and M. Trajtenberg, Patents, Citations, and Innovations: A Window on the Knowledge Economy,, The MIT Press Cambridge, (2002).

[21]

N. Jonard and M. Yildizoglu, Interaction of local interactions: Localized learning and network externalities,, in The Economics of Networks: Interaction and Behaviours, (1998), 189. doi: 10.1007/978-3-642-72260-8_8.

[22]

N. Jonard and M. Yildizoglu, Technological diversity in an evolutionary model with localized learning and network externalities,, Structural Change and Economic Dynamics, 9 (1998), 35. doi: 10.1016/S0954-349X(97)00027-1.

[23]

W. Keller, The Geography and Channels of Diffusion at the World's Technology Frontier, NBER Working Paper 8150,, 2001., ().

[24]

J. E. Keymer, M. A. Fuentes and P. A. Marquet, Diversity emerging: From competitive exclusion to neutral coexistence in ecosystems,, Theoretical Ecology, 5 (2012), 457. doi: 10.1007/s12080-011-0138-9.

[25]

D. A. Levinthal, The slow pace of rapid technological change: Gradualism and punctuated in technological change,, Industrial and Corporate Change, 7 (1998), 217. doi: 10.1093/acprof:oso/9780199269426.003.0008.

[26]

C. Marchetti, Society as a learning system: Discovery, invention and innovation cycles revisited,, Technol. Forecast. Soc. Chang., 18 (1980), 267. doi: 10.1016/0040-1625(80)90090-6.

[27]

T. Modis, Predictions: Societys Telltale Signature Reveals the Past and Forecasts the Future,, Simon and Scuster, (1992).

[28]

A. Nair and D. Ahlstrom, Delayed creative destruction and the coexistence of technologies,, J. Eng. Technol. Manage, 20 (2003), 345. doi: 10.1016/j.jengtecman.2003.08.003.

[29]

R. Nelson and S. Winter, In search of a useful theory of innovation,, Research Policy, 6 (1977), 36. doi: 10.1016/0048-7333(77)90029-4.

[30]

, Overview of the OECD Activities on Climate Change and the Main Policy. Tackling Climate Change and Growing the Economy, OECD Report,, 2010. Available from: , ().

[31]

F. Phillips, On S-curves and tipping points,, Technol. Forecast. Soc. Chang., 74 (2007), 715. doi: 10.1016/j.techfore.2006.11.006.

[32]

J. A. Schumpeter, The theory of economic development,, The European Heritage in Economics and the Social Sciences, 1 (2003), 61. doi: 10.1007/0-306-48082-4_3.

[33]

S.-J. Lee, D.-J. Lee and H.-S. Oh, Technological forecasting at the Korean stock market: A dynamic competition analysis using Lotka-Volterra model,, Technol. Forecast. Soc. Chang., 72 (2005), 1044.

[34]

J. Shot and F. W. Geels, Niches in evolutionary theories of technical change. A critical survey of the literature,, Industrial and Corporate Change, 17 (2007), 605. doi: 10.1007/s00191-007-0057-5.

[35]

G. Silverberg, G. Dosi and L. Orsenigo, Innovation, diversity and diffusion: A self-organisation model,, The Economic Journal, 98 (1988), 1032. doi: 10.2307/2233718.

[36]

A. Stirling, On the Economics and Analysis of Diversity,, SPRU Electronic Working Paper Series, 28 (1998).

[37]

J. Tan and M. W. Peng, Organizational slack and firm performance during economic transitions: Two studies from an emerging economy,, Strategic Management Journal, 24 (2003), 1249. doi: 10.1002/smj.351.

[38]

M. L. Tushman and P. Anderson, Technological discontinuities and organizational environments,, Administrative Science Quartely, 31 (1986), 439. doi: 10.2307/2392832.

[39]

C. Watanabe, R. Kondo, N. Ouchi and A. Wei, The dynamics of adaptation and evolutionary branching,, Physical Review Letters, 78 (1997), 2024.

[40]

C. Watanabe, R. Kondo and A. Nagamatsu, Policy options for the diffusion orbit of competitive innovations: An application of Lotka-Volterra equations to Japan's transition from analog to digital TV broadcasting,, Management Science, 23 (2003), 437. doi: 10.1016/S0166-4972(02)00004-4.

[41]

C. Watanabe, R. Kondo, N. Ouchi and A. Wei, A substitution orbit model of competitive innovations,, Technol. Forecast. Soc. Chang., 71 (2004), 365. doi: 10.1016/S0040-1625(02)00351-7.

[42]

H. P. Young, Innovation Diffusion in Heterogeneous Populations: Contagion, Social Influence and Social Learning, SFI Working Papers,, 2007., ().

show all references

References:
[1]

P. Anderson and M. L. Tushman, Technological discontinuities and dominant design: A cycle model of technological change,, Administrative Science Quartely, 35 (1990), 604.

[2]

F. Bass, A new product growth model for consumer durables,, Management Science, 50 (2004), 1825. doi: 10.1287/mnsc.1040.0264.

[3]

W. E. Bijker and T. P. Pinch, The Social Construction of Technological Systems: New Directions in the Sociology and History of Technology,, MIT Press, (1989).

[4]

C. M. Christensen, The Innovators Dilemma: When New Technologies Cause Great Firms to Fail,, Harvard Business School Press Boston, (1989).

[5]

C. W. Clark, Mathematical Bioeconomics: The Optimal Management of Environmental Resources,, John Wiley and Sons, (1990).

[6]

D. T. Coe, E. Helpman and A. W. Hoffmaister, North-South R & D spillovers,, The Economic Journal, 107 (1997), 134. doi: 10.3386/w5048.

[7]

F. Dercole, U. Dieckmann, M. Obersteiner and S. Rinaldi, Adaptive dynamics and technological change,, Technovation, 28 (2008), 335. doi: 10.1016/j.technovation.2007.11.004.

[8]

T. Devezas and J. Corredine, The biological determinants of long-wave behavior in socioeconomic growth and development,, Technol. Forecast. Soc. Chang., 68 (2001), 1. doi: 10.1016/S0040-1625(01)00136-6.

[9]

U. Dieckmann and R. Law, The dynamical theory of coevolution: A derivation from stochastic ecological processes,, J. Math. Biol., 34 (1996), 579. doi: 10.1007/BF02409751.

[10]

O. Diekmann, A beginners guide to adaptive dynamics,, Mathematical Modelling of Population Dynamics, 63 (2004), 47.

[11]

G. Dosi, Technological paradigms and technological trajectories,, Research Policy, 11 (1982), 147. doi: 10.1016/0048-7333(82)90016-6.

[12]

J. Fisher and R. Pry, A simple substitution model of technological change,, Technol. Forecast. Soc. Chang., 3 (1971), 75. doi: 10.1016/S0040-1625(71)80005-7.

[13]

C. Freeman and C. Pérez, Structural Crises of Adjustment, Business Cycles and Investment Behaviour,, in Technical Change and Economic Theory (eds. Dosi et. al.), (1998).

[14]

G. George, Slack resources and the performance of privately held firms,, Academy of Management Journal, 48 (2005), 661. doi: 10.5465/AMJ.2005.17843944.

[15]

A. Grübler, Technology and Global Change,, The Press Syndicate of the University of Cambridge, (1998).

[16]

R. Henderson, A. B. Jaffe and M. Trajtenberg, Universities as a source of commercial technology: A detailed analysis of university patenting, 1965-1988,, Review of Economics and Statistics, 80 (1998), 119. doi: 10.1162/003465398557221.

[17]

G. Z. Hu Albert and A. B. Jaffe, Patent citations and international knowledge flow: The cases of Korea and Taiwan,, International Journal of Industrial Organization, 21 (2005), 849.

[18]

A. B. Jaffe and M. Trajtenberg, International knowledge flows: Evidence from patent citations,, Economics of Innovation and New Technology, 8 (1999), 105. doi: 10.3386/w6507.

[19]

A. B. Jaffe, M. Trajtenberg, S. Michael and Fogarty, Knowledge spillovers and patent citations: Evidence from a survey of inventors,, American Economic Review, 90 (2000), 215. doi: 10.1257/aer.90.2.215.

[20]

A. B. Jaffe and M. Trajtenberg, Patents, Citations, and Innovations: A Window on the Knowledge Economy,, The MIT Press Cambridge, (2002).

[21]

N. Jonard and M. Yildizoglu, Interaction of local interactions: Localized learning and network externalities,, in The Economics of Networks: Interaction and Behaviours, (1998), 189. doi: 10.1007/978-3-642-72260-8_8.

[22]

N. Jonard and M. Yildizoglu, Technological diversity in an evolutionary model with localized learning and network externalities,, Structural Change and Economic Dynamics, 9 (1998), 35. doi: 10.1016/S0954-349X(97)00027-1.

[23]

W. Keller, The Geography and Channels of Diffusion at the World's Technology Frontier, NBER Working Paper 8150,, 2001., ().

[24]

J. E. Keymer, M. A. Fuentes and P. A. Marquet, Diversity emerging: From competitive exclusion to neutral coexistence in ecosystems,, Theoretical Ecology, 5 (2012), 457. doi: 10.1007/s12080-011-0138-9.

[25]

D. A. Levinthal, The slow pace of rapid technological change: Gradualism and punctuated in technological change,, Industrial and Corporate Change, 7 (1998), 217. doi: 10.1093/acprof:oso/9780199269426.003.0008.

[26]

C. Marchetti, Society as a learning system: Discovery, invention and innovation cycles revisited,, Technol. Forecast. Soc. Chang., 18 (1980), 267. doi: 10.1016/0040-1625(80)90090-6.

[27]

T. Modis, Predictions: Societys Telltale Signature Reveals the Past and Forecasts the Future,, Simon and Scuster, (1992).

[28]

A. Nair and D. Ahlstrom, Delayed creative destruction and the coexistence of technologies,, J. Eng. Technol. Manage, 20 (2003), 345. doi: 10.1016/j.jengtecman.2003.08.003.

[29]

R. Nelson and S. Winter, In search of a useful theory of innovation,, Research Policy, 6 (1977), 36. doi: 10.1016/0048-7333(77)90029-4.

[30]

, Overview of the OECD Activities on Climate Change and the Main Policy. Tackling Climate Change and Growing the Economy, OECD Report,, 2010. Available from: , ().

[31]

F. Phillips, On S-curves and tipping points,, Technol. Forecast. Soc. Chang., 74 (2007), 715. doi: 10.1016/j.techfore.2006.11.006.

[32]

J. A. Schumpeter, The theory of economic development,, The European Heritage in Economics and the Social Sciences, 1 (2003), 61. doi: 10.1007/0-306-48082-4_3.

[33]

S.-J. Lee, D.-J. Lee and H.-S. Oh, Technological forecasting at the Korean stock market: A dynamic competition analysis using Lotka-Volterra model,, Technol. Forecast. Soc. Chang., 72 (2005), 1044.

[34]

J. Shot and F. W. Geels, Niches in evolutionary theories of technical change. A critical survey of the literature,, Industrial and Corporate Change, 17 (2007), 605. doi: 10.1007/s00191-007-0057-5.

[35]

G. Silverberg, G. Dosi and L. Orsenigo, Innovation, diversity and diffusion: A self-organisation model,, The Economic Journal, 98 (1988), 1032. doi: 10.2307/2233718.

[36]

A. Stirling, On the Economics and Analysis of Diversity,, SPRU Electronic Working Paper Series, 28 (1998).

[37]

J. Tan and M. W. Peng, Organizational slack and firm performance during economic transitions: Two studies from an emerging economy,, Strategic Management Journal, 24 (2003), 1249. doi: 10.1002/smj.351.

[38]

M. L. Tushman and P. Anderson, Technological discontinuities and organizational environments,, Administrative Science Quartely, 31 (1986), 439. doi: 10.2307/2392832.

[39]

C. Watanabe, R. Kondo, N. Ouchi and A. Wei, The dynamics of adaptation and evolutionary branching,, Physical Review Letters, 78 (1997), 2024.

[40]

C. Watanabe, R. Kondo and A. Nagamatsu, Policy options for the diffusion orbit of competitive innovations: An application of Lotka-Volterra equations to Japan's transition from analog to digital TV broadcasting,, Management Science, 23 (2003), 437. doi: 10.1016/S0166-4972(02)00004-4.

[41]

C. Watanabe, R. Kondo, N. Ouchi and A. Wei, A substitution orbit model of competitive innovations,, Technol. Forecast. Soc. Chang., 71 (2004), 365. doi: 10.1016/S0040-1625(02)00351-7.

[42]

H. P. Young, Innovation Diffusion in Heterogeneous Populations: Contagion, Social Influence and Social Learning, SFI Working Papers,, 2007., ().

[1]

Archana Prashanth Joshi, Meng Han, Yan Wang. A survey on security and privacy issues of blockchain technology. Mathematical Foundations of Computing, 2018, 1 (2) : 121-147. doi: 10.3934/mfc.2018007

[2]

Shunfu Jin, Wuyi Yue, Chao Meng, Zsolt Saffer. A novel active DRX mechanism in LTE technology and its performance evaluation. Journal of Industrial & Management Optimization, 2015, 11 (3) : 849-866. doi: 10.3934/jimo.2015.11.849

[3]

Jianxiong Zhang, Zhenyu Bai, Wansheng Tang. Optimal pricing policy for deteriorating items with preservation technology investment. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1261-1277. doi: 10.3934/jimo.2014.10.1261

[4]

Nikos I. Kavallaris, Andrew A. Lacey, Christos V. Nikolopoulos, Dimitrios E. Tzanetis. On the quenching behaviour of a semilinear wave equation modelling MEMS technology. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1009-1037. doi: 10.3934/dcds.2015.35.1009

[5]

Muhammad Waqas Iqbal, Biswajit Sarkar. Application of preservation technology for lifetime dependent products in an integrated production system. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-28. doi: 10.3934/jimo.2018144

[6]

M. D. König, Stefano Battiston, M. Napoletano, F. Schweitzer. On algebraic graph theory and the dynamics of innovation networks. Networks & Heterogeneous Media, 2008, 3 (2) : 201-219. doi: 10.3934/nhm.2008.3.201

[7]

Zhilan Feng, Robert Swihart, Yingfei Yi, Huaiping Zhu. Coexistence in a metapopulation model with explicit local dynamics. Mathematical Biosciences & Engineering, 2004, 1 (1) : 131-145. doi: 10.3934/mbe.2004.1.131

[8]

Ben Niu, Weihua Jiang. Dynamics of a limit cycle oscillator with extended delay feedback. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1439-1458. doi: 10.3934/dcdsb.2013.18.1439

[9]

Miguel A. Dumett, Roberto Cominetti. On the stability of an adaptive learning dynamics in traffic games. Journal of Dynamics & Games, 2018, 0 (0) : 1-18. doi: 10.3934/jdg.2018017

[10]

Yixiang Wu, Necibe Tuncer, Maia Martcheva. Coexistence and competitive exclusion in an SIS model with standard incidence and diffusion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1167-1187. doi: 10.3934/dcdsb.2017057

[11]

Kousuke Kuto, Yoshio Yamada. Coexistence states for a prey-predator model with cross-diffusion. Conference Publications, 2005, 2005 (Special) : 536-545. doi: 10.3934/proc.2005.2005.536

[12]

Azmy S. Ackleh, Keng Deng, Yixiang Wu. Competitive exclusion and coexistence in a two-strain pathogen model with diffusion. Mathematical Biosciences & Engineering, 2016, 13 (1) : 1-18. doi: 10.3934/mbe.2016.13.1

[13]

Jeremias Epperlein, Stefan Siegmund, Petr Stehlík, Vladimír  Švígler. Coexistence equilibria of evolutionary games on graphs under deterministic imitation dynamics. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 803-813. doi: 10.3934/dcdsb.2016.21.803

[14]

Benlong Xu, Hongyan Jiang. Invasion and coexistence of competition-diffusion-advection system with heterogeneous vs homogeneous resources. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4255-4266. doi: 10.3934/dcdsb.2018136

[15]

Frédérique Billy, Jean Clairambault, Franck Delaunay, Céline Feillet, Natalia Robert. Age-structured cell population model to study the influence of growth factors on cell cycle dynamics. Mathematical Biosciences & Engineering, 2013, 10 (1) : 1-17. doi: 10.3934/mbe.2013.10.1

[16]

Chichia Chiu, Jui-Ling Yu. An optimal adaptive time-stepping scheme for solving reaction-diffusion-chemotaxis systems. Mathematical Biosciences & Engineering, 2007, 4 (2) : 187-203. doi: 10.3934/mbe.2007.4.187

[17]

Lili Ju, Wensong Wu, Weidong Zhao. Adaptive finite volume methods for steady convection-diffusion equations with mesh optimization. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 669-690. doi: 10.3934/dcdsb.2009.11.669

[18]

Wen Tan, Chunyou Sun. Dynamics for a non-autonomous reaction diffusion model with the fractional diffusion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6035-6067. doi: 10.3934/dcds.2017260

[19]

Henri Berestycki, Jean-Pierre Nadal, Nancy Rodíguez. A model of riots dynamics: Shocks, diffusion and thresholds. Networks & Heterogeneous Media, 2015, 10 (3) : 443-475. doi: 10.3934/nhm.2015.10.443

[20]

Kurt Falk, Marc Kesseböhmer, Tobias Henrik Oertel-Jäger, Jens D. M. Rademacher, Tony Samuel. Preface: Diffusion on fractals and non-linear dynamics. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : ⅰ-ⅳ. doi: 10.3934/dcdss.201702i

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (1)

[Back to Top]