• Previous Article
    Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream
  • DCDS-B Home
  • This Issue
  • Next Article
    The dynamics of technological change under constraints: Adopters and resources
2014, 19(10): 3283-3298. doi: 10.3934/dcdsb.2014.19.3283

A model for the biocontrol of mosquitoes using predatory fish

1. 

Department of Mathematics and Department of Zoology and Physiology, University of Wyoming, Laramie, WY, 82071, United States

2. 

Department of Mathematics, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom

Received  June 2013 Revised  March 2014 Published  October 2014

We present a mathematical model for the localised control of mosquitoes using larvivorous fish. It is supposed that the adult mosquitoes choose among a finite number of isolated ponds for oviposition and that these ponds differ in various respects including physical size, survival prospects and maturation times for mosquito larvae. We model a mosquito control effort that involves stocking some or all of these ponds with larvivorous fish such as the mosquitofish Gambusia affinis. The effect of doing so may vary from pond to pond, and the ponds are coupled via the adult mosquitoes in the air. Also, adult mosquitoes may avoid ovipositing in ponds containing the larvivorous fish. Our model enables us to predict how the larvivorous fish should be allocated between ponds, and shows in particular that only certain ponds should be stocked if there is a limited supply of the fish. We also consider oviposition pond selection by mosquitoes, and show that in some situations mosquitoes might do better to simply choose a pond at random.
Citation: Rongsong Liu, Stephen A. Gourley. A model for the biocontrol of mosquitoes using predatory fish. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3283-3298. doi: 10.3934/dcdsb.2014.19.3283
References:
[1]

M. Araujo, L. H. S. Gil and A. e-Silva, Larval food quantity affects development time, survival and adult biological traits that influence the vectorial capacity of Anopheles darlingi under laboratory conditions,, Malaria Journal, 11 (2012).

[2]

L. Blaustein and R. Karban, Indirect effects of the mosquitofish Gambusia affinis on the mosquito Culex tarsalis,, Limnology and Oceanography, 35 (1990), 767.

[3]

, Centers for Disease Control (CDC), Anopheles Mosquitoes,, , ().

[4]

J. D. Charlwood, T. Smith, P. F. Billingsley, W. Takken, E. O. K. Lyimo and J. H. E. T. Meuwissen, Survival and infection probabilities of anthropophagic anophelines from an area of high prevalence of Plasmodium falciparum in humans,, Bull. Entomol. Res., 87 (1997), 445.

[5]

J. E. Deacon, C. Hubbs and B. J. Zahuranec, Some effects of introduced fishes on the native fish fauna of southern Nevada,, Copeia, 1964 (1964), 384. doi: 10.2307/1441031.

[6]

S. A. Gourley, R. Liu and J. Wu, Some vector borne diseases with structured host populations: Extinction and spatial spread,, SIAM J. Appl. Math., 67 (): 408. doi: 10.1137/050648717.

[7]

S. A. Gourley and S. Ruan, A delay equation model for oviposition habitat selection by mosquitoes,, J. Math. Biol., 65 (2012), 1125. doi: 10.1007/s00285-011-0491-8.

[8]

W. S. C. Gurney, S. P. Blythe and R. M. Nisbet, Nicholson's blowflies revisited,, Nature, 287 (1980), 17. doi: 10.1038/287017a0.

[9]

L. A. Krumholz, Reproduction in the western mosquitofish, Gambusia affinis affinis (Baird & Girard), and its use in mosquito control,, Ecological Monographs, 18 (1948), 1.

[10]

G. K. Meffe, D. A. Hendrickson and W. L. Minckley, Factors resulting in decline of the endangered Sonoran topminnow Poeciliopsis occidentalis (Atheriniformes: Poeciliidae) in the United States,, Biological Conservation, 25 (1983), 135.

[11]

G. K. Meffe, Predation and species replacement in American southwestern fishes: a case study,, Southwestern Naturalist, 30 (1985), 173. doi: 10.2307/3670732.

[12]

A. Mokany and R. Shine, Oviposition site selection by mosquitoes is affected by cues from conspecific larvae and anuran tadpoles,, Austral Ecology, 28 (2003), 33. doi: 10.1046/j.1442-9993.2003.01239.x.

[13]

P. B. Moyle, Inland Fishes of California,, University of California Press, (1976).

[14]

M. H. Reiskind and A. A. Zarrabi, Water surface area and depth determine oviposition choice in Aedes albopictus (Diptera: Culicidae),, J. Med. Entomol., 49 (2012), 71.

[15]

J. B. Silver, Mosquito Ecology: Field Sampling Methods,, Springer, (2008).

[16]

H. L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,, Mathematical Surveys and Monographs, (1995).

[17]

M. Spencer, L. Blaustein and J. E. Cohen, Oviposition habitat selection by mosquitoes (culiseta longiareolata) and consequences for population size,, Ecology, 83 (2002), 669. doi: 10.2307/3071872.

[18]

M. J. Wonham, T. de-Camino-Beck and M. A. Lewis, An epidemiological model for West Nile virus: Invasion analysis and control applications,, Proc. R. Soc. Lond. Ser. B., 271 (2004), 501. doi: 10.1098/rspb.2003.2608.

[19]

M. Yoshioka, J. Couret, F. Kim, J. McMillan, T. R. Burkot, E. M. Dotson, U. Kitron and G. M. Vazquez-Prokopec, Diet and density dependent competition affect larval performance and oviposition site selection in the mosquito species Aedes albopictus (Diptera: Culicidae),, Parasit Vectors, 5 (2012).

show all references

References:
[1]

M. Araujo, L. H. S. Gil and A. e-Silva, Larval food quantity affects development time, survival and adult biological traits that influence the vectorial capacity of Anopheles darlingi under laboratory conditions,, Malaria Journal, 11 (2012).

[2]

L. Blaustein and R. Karban, Indirect effects of the mosquitofish Gambusia affinis on the mosquito Culex tarsalis,, Limnology and Oceanography, 35 (1990), 767.

[3]

, Centers for Disease Control (CDC), Anopheles Mosquitoes,, , ().

[4]

J. D. Charlwood, T. Smith, P. F. Billingsley, W. Takken, E. O. K. Lyimo and J. H. E. T. Meuwissen, Survival and infection probabilities of anthropophagic anophelines from an area of high prevalence of Plasmodium falciparum in humans,, Bull. Entomol. Res., 87 (1997), 445.

[5]

J. E. Deacon, C. Hubbs and B. J. Zahuranec, Some effects of introduced fishes on the native fish fauna of southern Nevada,, Copeia, 1964 (1964), 384. doi: 10.2307/1441031.

[6]

S. A. Gourley, R. Liu and J. Wu, Some vector borne diseases with structured host populations: Extinction and spatial spread,, SIAM J. Appl. Math., 67 (): 408. doi: 10.1137/050648717.

[7]

S. A. Gourley and S. Ruan, A delay equation model for oviposition habitat selection by mosquitoes,, J. Math. Biol., 65 (2012), 1125. doi: 10.1007/s00285-011-0491-8.

[8]

W. S. C. Gurney, S. P. Blythe and R. M. Nisbet, Nicholson's blowflies revisited,, Nature, 287 (1980), 17. doi: 10.1038/287017a0.

[9]

L. A. Krumholz, Reproduction in the western mosquitofish, Gambusia affinis affinis (Baird & Girard), and its use in mosquito control,, Ecological Monographs, 18 (1948), 1.

[10]

G. K. Meffe, D. A. Hendrickson and W. L. Minckley, Factors resulting in decline of the endangered Sonoran topminnow Poeciliopsis occidentalis (Atheriniformes: Poeciliidae) in the United States,, Biological Conservation, 25 (1983), 135.

[11]

G. K. Meffe, Predation and species replacement in American southwestern fishes: a case study,, Southwestern Naturalist, 30 (1985), 173. doi: 10.2307/3670732.

[12]

A. Mokany and R. Shine, Oviposition site selection by mosquitoes is affected by cues from conspecific larvae and anuran tadpoles,, Austral Ecology, 28 (2003), 33. doi: 10.1046/j.1442-9993.2003.01239.x.

[13]

P. B. Moyle, Inland Fishes of California,, University of California Press, (1976).

[14]

M. H. Reiskind and A. A. Zarrabi, Water surface area and depth determine oviposition choice in Aedes albopictus (Diptera: Culicidae),, J. Med. Entomol., 49 (2012), 71.

[15]

J. B. Silver, Mosquito Ecology: Field Sampling Methods,, Springer, (2008).

[16]

H. L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,, Mathematical Surveys and Monographs, (1995).

[17]

M. Spencer, L. Blaustein and J. E. Cohen, Oviposition habitat selection by mosquitoes (culiseta longiareolata) and consequences for population size,, Ecology, 83 (2002), 669. doi: 10.2307/3071872.

[18]

M. J. Wonham, T. de-Camino-Beck and M. A. Lewis, An epidemiological model for West Nile virus: Invasion analysis and control applications,, Proc. R. Soc. Lond. Ser. B., 271 (2004), 501. doi: 10.1098/rspb.2003.2608.

[19]

M. Yoshioka, J. Couret, F. Kim, J. McMillan, T. R. Burkot, E. M. Dotson, U. Kitron and G. M. Vazquez-Prokopec, Diet and density dependent competition affect larval performance and oviposition site selection in the mosquito species Aedes albopictus (Diptera: Culicidae),, Parasit Vectors, 5 (2012).

[1]

Hui Wan, Huaiping Zhu. A new model with delay for mosquito population dynamics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1395-1410. doi: 10.3934/mbe.2014.11.1395

[2]

Jan Sieber, Matthias Wolfrum, Mark Lichtner, Serhiy Yanchuk. On the stability of periodic orbits in delay equations with large delay. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3109-3134. doi: 10.3934/dcds.2013.33.3109

[3]

Pham Huu Anh Ngoc. Stability of nonlinear differential systems with delay. Evolution Equations & Control Theory, 2015, 4 (4) : 493-505. doi: 10.3934/eect.2015.4.493

[4]

Luis Barreira, Claudia Valls. Delay equations and nonuniform exponential stability. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 219-223. doi: 10.3934/dcdss.2008.1.219

[5]

Anatoly Neishtadt. On stability loss delay for dynamical bifurcations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 897-909. doi: 10.3934/dcdss.2009.2.897

[6]

Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577

[7]

Elena Braverman, Sergey Zhukovskiy. Absolute and delay-dependent stability of equations with a distributed delay. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2041-2061. doi: 10.3934/dcds.2012.32.2041

[8]

Tomás Caraballo, Leonid Shaikhet. Stability of delay evolution equations with stochastic perturbations. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2095-2113. doi: 10.3934/cpaa.2014.13.2095

[9]

Leonid Berezansky, Elena Braverman. Stability of linear differential equations with a distributed delay. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1361-1375. doi: 10.3934/cpaa.2011.10.1361

[10]

István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773

[11]

Edoardo Beretta, Dimitri Breda. Discrete or distributed delay? Effects on stability of population growth. Mathematical Biosciences & Engineering, 2016, 13 (1) : 19-41. doi: 10.3934/mbe.2016.13.19

[12]

M. Predescu, R. Levins, T. Awerbuch-Friedlander. Analysis of a nonlinear system for community intervention in mosquito control . Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 605-622. doi: 10.3934/dcdsb.2006.6.605

[13]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2/3) : 295-313. doi: 10.3934/dcds.2007.18.295

[14]

Leonid Shaikhet. Stability of equilibriums of stochastically perturbed delay differential neoclassical growth model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1565-1573. doi: 10.3934/dcdsb.2017075

[15]

Samuel Bernard, Fabien Crauste. Optimal linear stability condition for scalar differential equations with distributed delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1855-1876. doi: 10.3934/dcdsb.2015.20.1855

[16]

C. Connell McCluskey. Global stability for an SEIR epidemiological model with varying infectivity and infinite delay. Mathematical Biosciences & Engineering, 2009, 6 (3) : 603-610. doi: 10.3934/mbe.2009.6.603

[17]

Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445

[18]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[19]

Cemil Tunç. Stability, boundedness and uniform boundedness of solutions of nonlinear delay differential equations. Conference Publications, 2011, 2011 (Special) : 1395-1403. doi: 10.3934/proc.2011.2011.1395

[20]

Silviu-Iulian Niculescu, Peter S. Kim, Keqin Gu, Peter P. Lee, Doron Levy. Stability crossing boundaries of delay systems modeling immune dynamics in leukemia. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 129-156. doi: 10.3934/dcdsb.2010.13.129

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]