# American Institute of Mathematical Sciences

2014, 19(10): 3133-3145. doi: 10.3934/dcdsb.2014.19.3133

## A periodic Ross-Macdonald model in a patchy environment

 1 Francis I. Proctor Foundation for Research in Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, United States 2 Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 3 Department of Mathematics, University of Miami, Coral Gables, FL 33124

Received  July 2013 Revised  January 2014 Published  October 2014

Based on the classical Ross-Macdonald model, in this paper we propose a periodic malaria model to incorporate the effects of temporal and spatial heterogeneity on disease transmission. The temporal heterogeneity is described by assuming that some model coefficients are time-periodic, while the spatial heterogeneity is modeled by using a multi-patch structure and assuming that individuals travel among patches. We calculate the basic reproduction number $\mathcal{R}_0$ and show that either the disease-free periodic solution is globally asymptotically stable if $\mathcal{R}_0\le 1$ or the positive periodic solution is globally asymptotically stable if $\mathcal{R}_0>1$. Numerical simulations are conducted to confirm the analytical results and explore the effect of travel control on the disease prevalence.
Citation: Daozhou Gao, Yijun Lou, Shigui Ruan. A periodic Ross-Macdonald model in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3133-3145. doi: 10.3934/dcdsb.2014.19.3133
##### References:
 [1] S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascual and P. Rohani, Seasonality and the dynamics of infectious diseases,, Ecol. Lett., 9 (2006), 467. doi: 10.1111/j.1461-0248.2005.00879.x. [2] G. Aronsson and R. B. Kellogg, On a differential equation arising from compartmental analysis,, Math. Biosci., 38 (1973), 113. doi: 10.1016/0025-5564(78)90021-4. [3] P. Auger, E. Kouokam, G. Sallet, M. Tchuente and B. Tsanou, The Ross-Macdonald model in a patchy environment,, Math. Biosci., 216 (2008), 123. doi: 10.1016/j.mbs.2008.08.010. [4] N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality,, J. Math. Biol., 53 (2006), 421. doi: 10.1007/s00285-006-0015-0. [5] N. Bacaër, Approximation of the basic reproduction number $R_0$ for vector-borne diseases with a periodic vector population,, Bull. Math. Biol., 69 (2007), 1067. doi: 10.1007/s11538-006-9166-9. [6] Z. Bai and Y. Zhou, Threshold dynamics of a Bacillary Dysentery model with seasonal fluctuation,, Discrete Contin. Dyn. Syst., 15 (2011), 1. doi: 10.3934/dcdsb.2011.15.1. [7] C. Cosner, J. C. Beier, R. S. Cantrell, D. Impoinvil, L. Kapitanski, M. D. Potts, A. Troyo and S. Ruan, The effects of human movement on the persistence of vector-borne diseases,, J. Theoret. Biol., 258 (2009), 550. doi: 10.1016/j.jtbi.2009.02.016. [8] C. Costantini, S. G. Li, A. D. Torre, N. Sagnon, M. Coluzzi and C. E. Taylor, Density, survival and dispersal of Anopheles gambiae complex mosquitoes in a West African Sudan savanna village,, Med. Vet. Entomol., 10 (1996), 203. doi: 10.1111/j.1365-2915.1996.tb00733.x. [9] M. H. Craig, I. Kleinschmidt, J. B. Nawn, D. Le Sueur and B. L. Sharp, Exploring 30 years of malaria case data in KwaZulu-Natal, South Africa: Part I. The impact of climatic factors,, Trop. Med. Int. Health, 9 (2004), 1247. doi: 10.1111/j.1365-3156.2004.01340.x. [10] B. Dembele, A. Friedman and A.-A. Yakubu, Malaria model with periodic mosquito birth and death rates,, J. Biol. Dynam., 3 (2009), 430. doi: 10.1080/17513750802495816. [11] D. Gao and S. Ruan, A multi-patch malaria model with logistic growth populations,, SIAM J. Appl. Math., 72 (2012), 819. doi: 10.1137/110850761. [12] H. Gao, L. Wang, S. Liang, Y. Liu, S. Tong, J. Wang, Y. Li, X. Wang, H. Yang, J. Ma, L. Fang and W. Cao, Change in rainfall drives malaria re-emergence in Anhui province, China,, PLoS ONE, 7 (2012). doi: 10.1371/journal.pone.0043686. [13] N. C. Grassly and C. Fraser, Seasonal infectious disease epidemiology,, Proc. R. Soc. B., 273 (2006), 2541. doi: 10.1098/rspb.2006.3604. [14] J. K. Hale, Ordinary Differential Equations,, Wiley-Interscience, (1980). [15] M. W. Hirsch, H. L. Smith and X.-Q. Zhao, Chain transitivity, attractivity, and strong repellors for semidynamical systems,, J. Dyn. Differ. Equ., 13 (2001), 107. doi: 10.1023/A:1009044515567. [16] K. D. Lafferty, The ecology of climate change and infectious diseases,, Ecology, 90 (2009), 888. doi: 10.1890/08-0079.1. [17] L. Liu, X.-Q. Zhao and Y. Zhou, A tuberculosis model with seasonality,, Bull. Math. Biol., 72 (2010), 931. doi: 10.1007/s11538-009-9477-8. [18] X. Liu and X.-Q. Zhao, A periodic epidemic model with age structure in a patchy environment,, SIAM J. Appl. Math., 71 (2011), 1896. doi: 10.1137/100813610. [19] J. Lou, Y. Lou and J. Wu, Threshold virus dynamics with impulsive antiretroviral drug effects,, J. Math. Biol., 65 (2012), 623. doi: 10.1007/s00285-011-0474-9. [20] Y. Lou and X.-Q. Zhao, The periodic Ross-Macdonald model with diffusion and advection,, Appl. Anal., 89 (2010), 1067. doi: 10.1080/00036810903437804. [21] Y. Lou and X.-Q. Zhao, A climate-based malaria transmission model with structured vector population,, SIAM J. Appl. Math., 70 (2010), 2023. doi: 10.1137/080744438. [22] Y. Lou and X.-Q. Zhao, Modelling malaria control by introduction of larvivorous fish,, Bull. Math. Biol., 73 (2011), 2384. doi: 10.1007/s11538-011-9628-6. [23] G. Macdonald, The analysis of sporozoite rate,, Trop. Dis. Bull., 49 (1952), 569. [24] G. Macdonald, Epidemiological basis of malaria control,, Bull. World Health Organ., 15 (1956), 613. [25] G. Macdonald, The Epidemiology and Control of Malaria,, Oxford University Press, (1957). [26] J. T. Midega, C. M. Mbogo, H. Mwambi, M. D. Wilson, G. Ojwang, J. M. Mwangangi, J. G. Nzovu, J. I. Githure, G. Yan and J. C. Beier, Estimating dispersal and survival of Anopheles gambiae and Anopheles funestus along the Kenyan coast by using mark-release-recapture methods,, J. Med. Entomol., 44 (2007), 923. doi: {10.1603/0022-2585(2007)44[923:EDASOA]2.0.CO;2}. [27] R. S. Ostfeld, Climate change and the distribution and intensity of infectious diseases,, Ecology, 90 (2009), 903. doi: 10.1890/08-0659.1. [28] P. E. Parham and E. Michael, Modeling the effects of weather and climate change on malaria transmission,, Environ. Health Perspect., 118 (2010), 620. doi: 10.1289/ehp.0901256. [29] D. Rain, Eaters of the Dry Season: Circular Labor Migration in the West African Sahel,, Westview Press, (1999). [30] A. Roca-Feltrer, J. R. Armstrong Schellenberg, L. Smith and I. Carneiro, A simple method for defining malaria seasonality,, Malaria J., 8 (2009). doi: 10.1186/1475-2875-8-276. [31] R. Ross, The Prevention of Malaria,, 2nd edn., (1911). [32] S. Ruan, D. Xiao and J. C. Beier, On the delayed Ross-Macdonald model for malaria transmission,, Bull. Math. Biol., 70 (2008), 1098. doi: 10.1007/s11538-007-9292-z. [33] D. L. Smith, J. Dushoff and F. E. McKenzie, The risk of a mosquito-borne infection in a heterogeneous environment,, PLoS Biology, 2 (2004), 1957. [34] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, Mathematical Surveys and Monographs, (1995). [35] H. L. Smith and P. Waltman, The Theory of the Chemostat,, Cambridge University Press, (1995). doi: 10.1017/CBO9780511530043. [36] W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments,, J. Dyn. Differ. Equ., 20 (2008), 699. doi: 10.1007/s10884-008-9111-8. [37] P. Weng and X.-Q. Zhao, Spatial dynamics of a nonlocal and delayed population model in a periodic habitat,, Discrete Contin. Dyn. Syst. Ser. A, 29 (2011), 343. doi: 10.3934/dcds.2011.29.343. [38] J. Zhang, Z. Jin, G. Sun, X. Sun and S. Ruan, Modeling seasonal Rabies epidemics in China,, Bull. Math. Biol., 74 (2012), 1226. doi: 10.1007/s11538-012-9720-6. [39] T. Zhang and Z. Teng, On a nonautonomous SEIRS model in epidemiology,, Bull. Math. Biol., 69 (2007), 2537. doi: 10.1007/s11538-007-9231-z. [40] X.-Q. Zhao, Dynamical Systems in Population Biology,, Springer-Verlag, (2003). doi: 10.1007/978-0-387-21761-1.

show all references

##### References:
 [1] S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascual and P. Rohani, Seasonality and the dynamics of infectious diseases,, Ecol. Lett., 9 (2006), 467. doi: 10.1111/j.1461-0248.2005.00879.x. [2] G. Aronsson and R. B. Kellogg, On a differential equation arising from compartmental analysis,, Math. Biosci., 38 (1973), 113. doi: 10.1016/0025-5564(78)90021-4. [3] P. Auger, E. Kouokam, G. Sallet, M. Tchuente and B. Tsanou, The Ross-Macdonald model in a patchy environment,, Math. Biosci., 216 (2008), 123. doi: 10.1016/j.mbs.2008.08.010. [4] N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality,, J. Math. Biol., 53 (2006), 421. doi: 10.1007/s00285-006-0015-0. [5] N. Bacaër, Approximation of the basic reproduction number $R_0$ for vector-borne diseases with a periodic vector population,, Bull. Math. Biol., 69 (2007), 1067. doi: 10.1007/s11538-006-9166-9. [6] Z. Bai and Y. Zhou, Threshold dynamics of a Bacillary Dysentery model with seasonal fluctuation,, Discrete Contin. Dyn. Syst., 15 (2011), 1. doi: 10.3934/dcdsb.2011.15.1. [7] C. Cosner, J. C. Beier, R. S. Cantrell, D. Impoinvil, L. Kapitanski, M. D. Potts, A. Troyo and S. Ruan, The effects of human movement on the persistence of vector-borne diseases,, J. Theoret. Biol., 258 (2009), 550. doi: 10.1016/j.jtbi.2009.02.016. [8] C. Costantini, S. G. Li, A. D. Torre, N. Sagnon, M. Coluzzi and C. E. Taylor, Density, survival and dispersal of Anopheles gambiae complex mosquitoes in a West African Sudan savanna village,, Med. Vet. Entomol., 10 (1996), 203. doi: 10.1111/j.1365-2915.1996.tb00733.x. [9] M. H. Craig, I. Kleinschmidt, J. B. Nawn, D. Le Sueur and B. L. Sharp, Exploring 30 years of malaria case data in KwaZulu-Natal, South Africa: Part I. The impact of climatic factors,, Trop. Med. Int. Health, 9 (2004), 1247. doi: 10.1111/j.1365-3156.2004.01340.x. [10] B. Dembele, A. Friedman and A.-A. Yakubu, Malaria model with periodic mosquito birth and death rates,, J. Biol. Dynam., 3 (2009), 430. doi: 10.1080/17513750802495816. [11] D. Gao and S. Ruan, A multi-patch malaria model with logistic growth populations,, SIAM J. Appl. Math., 72 (2012), 819. doi: 10.1137/110850761. [12] H. Gao, L. Wang, S. Liang, Y. Liu, S. Tong, J. Wang, Y. Li, X. Wang, H. Yang, J. Ma, L. Fang and W. Cao, Change in rainfall drives malaria re-emergence in Anhui province, China,, PLoS ONE, 7 (2012). doi: 10.1371/journal.pone.0043686. [13] N. C. Grassly and C. Fraser, Seasonal infectious disease epidemiology,, Proc. R. Soc. B., 273 (2006), 2541. doi: 10.1098/rspb.2006.3604. [14] J. K. Hale, Ordinary Differential Equations,, Wiley-Interscience, (1980). [15] M. W. Hirsch, H. L. Smith and X.-Q. Zhao, Chain transitivity, attractivity, and strong repellors for semidynamical systems,, J. Dyn. Differ. Equ., 13 (2001), 107. doi: 10.1023/A:1009044515567. [16] K. D. Lafferty, The ecology of climate change and infectious diseases,, Ecology, 90 (2009), 888. doi: 10.1890/08-0079.1. [17] L. Liu, X.-Q. Zhao and Y. Zhou, A tuberculosis model with seasonality,, Bull. Math. Biol., 72 (2010), 931. doi: 10.1007/s11538-009-9477-8. [18] X. Liu and X.-Q. Zhao, A periodic epidemic model with age structure in a patchy environment,, SIAM J. Appl. Math., 71 (2011), 1896. doi: 10.1137/100813610. [19] J. Lou, Y. Lou and J. Wu, Threshold virus dynamics with impulsive antiretroviral drug effects,, J. Math. Biol., 65 (2012), 623. doi: 10.1007/s00285-011-0474-9. [20] Y. Lou and X.-Q. Zhao, The periodic Ross-Macdonald model with diffusion and advection,, Appl. Anal., 89 (2010), 1067. doi: 10.1080/00036810903437804. [21] Y. Lou and X.-Q. Zhao, A climate-based malaria transmission model with structured vector population,, SIAM J. Appl. Math., 70 (2010), 2023. doi: 10.1137/080744438. [22] Y. Lou and X.-Q. Zhao, Modelling malaria control by introduction of larvivorous fish,, Bull. Math. Biol., 73 (2011), 2384. doi: 10.1007/s11538-011-9628-6. [23] G. Macdonald, The analysis of sporozoite rate,, Trop. Dis. Bull., 49 (1952), 569. [24] G. Macdonald, Epidemiological basis of malaria control,, Bull. World Health Organ., 15 (1956), 613. [25] G. Macdonald, The Epidemiology and Control of Malaria,, Oxford University Press, (1957). [26] J. T. Midega, C. M. Mbogo, H. Mwambi, M. D. Wilson, G. Ojwang, J. M. Mwangangi, J. G. Nzovu, J. I. Githure, G. Yan and J. C. Beier, Estimating dispersal and survival of Anopheles gambiae and Anopheles funestus along the Kenyan coast by using mark-release-recapture methods,, J. Med. Entomol., 44 (2007), 923. doi: {10.1603/0022-2585(2007)44[923:EDASOA]2.0.CO;2}. [27] R. S. Ostfeld, Climate change and the distribution and intensity of infectious diseases,, Ecology, 90 (2009), 903. doi: 10.1890/08-0659.1. [28] P. E. Parham and E. Michael, Modeling the effects of weather and climate change on malaria transmission,, Environ. Health Perspect., 118 (2010), 620. doi: 10.1289/ehp.0901256. [29] D. Rain, Eaters of the Dry Season: Circular Labor Migration in the West African Sahel,, Westview Press, (1999). [30] A. Roca-Feltrer, J. R. Armstrong Schellenberg, L. Smith and I. Carneiro, A simple method for defining malaria seasonality,, Malaria J., 8 (2009). doi: 10.1186/1475-2875-8-276. [31] R. Ross, The Prevention of Malaria,, 2nd edn., (1911). [32] S. Ruan, D. Xiao and J. C. Beier, On the delayed Ross-Macdonald model for malaria transmission,, Bull. Math. Biol., 70 (2008), 1098. doi: 10.1007/s11538-007-9292-z. [33] D. L. Smith, J. Dushoff and F. E. McKenzie, The risk of a mosquito-borne infection in a heterogeneous environment,, PLoS Biology, 2 (2004), 1957. [34] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, Mathematical Surveys and Monographs, (1995). [35] H. L. Smith and P. Waltman, The Theory of the Chemostat,, Cambridge University Press, (1995). doi: 10.1017/CBO9780511530043. [36] W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments,, J. Dyn. Differ. Equ., 20 (2008), 699. doi: 10.1007/s10884-008-9111-8. [37] P. Weng and X.-Q. Zhao, Spatial dynamics of a nonlocal and delayed population model in a periodic habitat,, Discrete Contin. Dyn. Syst. Ser. A, 29 (2011), 343. doi: 10.3934/dcds.2011.29.343. [38] J. Zhang, Z. Jin, G. Sun, X. Sun and S. Ruan, Modeling seasonal Rabies epidemics in China,, Bull. Math. Biol., 74 (2012), 1226. doi: 10.1007/s11538-012-9720-6. [39] T. Zhang and Z. Teng, On a nonautonomous SEIRS model in epidemiology,, Bull. Math. Biol., 69 (2007), 2537. doi: 10.1007/s11538-007-9231-z. [40] X.-Q. Zhao, Dynamical Systems in Population Biology,, Springer-Verlag, (2003). doi: 10.1007/978-0-387-21761-1.
 [1] Xinli Hu. Threshold dynamics for a Tuberculosis model with seasonality. Mathematical Biosciences & Engineering, 2012, 9 (1) : 111-122. doi: 10.3934/mbe.2012.9.111 [2] Toshikazu Kuniya, Yoshiaki Muroya, Yoichi Enatsu. Threshold dynamics of an SIR epidemic model with hybrid of multigroup and patch structures. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1375-1393. doi: 10.3934/mbe.2014.11.1375 [3] Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37 [4] Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595 [5] Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565 [6] Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455 [7] Henri Berestycki, Jean-Michel Roquejoffre, Luca Rossi. The periodic patch model for population dynamics with fractional diffusion. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 1-13. doi: 10.3934/dcdss.2011.4.1 [8] Bruno Buonomo, Giuseppe Carbone, Alberto d'Onofrio. Effect of seasonality on the dynamics of an imitation-based vaccination model with public health intervention. Mathematical Biosciences & Engineering, 2018, 15 (1) : 299-321. doi: 10.3934/mbe.2018013 [9] Zhenguo Bai, Yicang Zhou. Threshold dynamics of a bacillary dysentery model with seasonal fluctuation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 1-14. doi: 10.3934/dcdsb.2011.15.1 [10] Scott W. Hansen. Controllability of a basic cochlea model. Evolution Equations & Control Theory, 2016, 5 (4) : 475-487. doi: 10.3934/eect.2016015 [11] Qingwen Hu. A model of regulatory dynamics with threshold-type state-dependent delay. Mathematical Biosciences & Engineering, 2018, 15 (4) : 863-882. doi: 10.3934/mbe.2018039 [12] Lin Zhao, Zhi-Cheng Wang, Liang Zhang. Threshold dynamics of a time periodic and two–group epidemic model with distributed delay. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1535-1563. doi: 10.3934/mbe.2017080 [13] Liang Zhang, Zhi-Cheng Wang. Threshold dynamics of a reaction-diffusion epidemic model with stage structure. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3797-3820. doi: 10.3934/dcdsb.2017191 [14] Yijun Lou, Xiao-Qiang Zhao. Threshold dynamics in a time-delayed periodic SIS epidemic model. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 169-186. doi: 10.3934/dcdsb.2009.12.169 [15] Zhenguo Bai. Threshold dynamics of a periodic SIR model with delay in an infected compartment. Mathematical Biosciences & Engineering, 2015, 12 (3) : 555-564. doi: 10.3934/mbe.2015.12.555 [16] Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239 [17] Donald L. DeAngelis, Bo Zhang. Effects of dispersal in a non-uniform environment on population dynamics and competition: A patch model approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3087-3104. doi: 10.3934/dcdsb.2014.19.3087 [18] Hui Wan, Jing-An Cui. A model for the transmission of malaria. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 479-496. doi: 10.3934/dcdsb.2009.11.479 [19] Jia Li. A malaria model with partial immunity in humans. Mathematical Biosciences & Engineering, 2008, 5 (4) : 789-801. doi: 10.3934/mbe.2008.5.789 [20] Lili Liu, Xianning Liu, Jinliang Wang. Threshold dynamics of a delayed multi-group heroin epidemic model in heterogeneous populations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2615-2630. doi: 10.3934/dcdsb.2016064

2017 Impact Factor: 0.972