# American Institute of Mathematical Sciences

2014, 19(10): 3105-3132. doi: 10.3934/dcdsb.2014.19.3105

## The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor

 1 School of Science and Technology, University of New England, Armidale, NSW 2351 2 School of Mathematical Science, Yangzhou University, Yangzhou 225002

Received  March 2013 Revised  May 2013 Published  October 2014

In this paper we consider the diffusive competition model consisting of an invasive species with density $u$ and a native species with density $v$, in a radially symmetric setting with free boundary. We assume that $v$ undergoes diffusion and growth in $\mathbb{R}^N$, and $u$ exists initially in a ball ${r < h(0)}$, but invades into the environment with spreading front ${r = h(t)}$, with $h(t)$ evolving according to the free boundary condition $h'(t) = -\mu u_r(t, h(t))$, where $\mu>0$ is a given constant and $u(t,h(t))=0$. Thus the population range of $u$ is the expanding ball ${r < h(t)}$, while that for $v$ is $\mathbb{R}^N$. In the case that $u$ is a superior competitor (determined by the reaction terms), we show that a spreading-vanishing dichotomy holds, namely, as $t\to\infty$, either $h(t)\to\infty$ and $(u,v)\to (u^*,0)$, or $\lim_{t\to\infty} h(t)<\infty$ and $(u,v)\to (0,v^*)$, where $(u^*,0)$ and $(0, v^*)$ are the semitrivial steady-states of the system. Moreover, when spreading of $u$ happens, some rough estimates of the spreading speed are also given. When $u$ is an inferior competitor, we show that $(u,v)\to (0,v^*)$ as $t\to\infty$, so the invasive species $u$ always vanishes in the long run.
Citation: Yihong Du, Zhigui Lin. The diffusive competition model with a free boundary: Invasion of a superior or inferior competitor. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3105-3132. doi: 10.3934/dcdsb.2014.19.3105
##### References:
 [1] G. Bunting, Y. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model,, Netw. Heterog. Media, 7 (2012), 583. doi: 10.3934/nhm.2012.7.583. [2] X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing,, SIAM J. Math. Anal., 32 (2000), 778. doi: 10.1137/S0036141099351693. [3] R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations,, John Wiley& Sons Ltd, (2003). doi: 10.1002/0470871296. [4] Y. Du and Z. M. Guo, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary II,, J. Diff. Eqns., 250 (2011), 4336. doi: 10.1016/j.jde.2011.02.011. [5] Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary,, SIAM J. Math. Anal., 42 (2010), 377. doi: 10.1137/090771089. [6] Y. Du and L. Ma, Logistic type equations on $\mathbbR^N$ by a squeezing method involving boundary blow-up solutions,, J. London Math. Soc., 64 (2001), 107. doi: 10.1017/S0024610701002289. [7] J.-S. Guo and C.-H. Wu, On a free boundary problem for a two-species weak competition system,, J. Dyn. Diff. Equat., 24 (2012), 873. doi: 10.1007/s10884-012-9267-0. [8] Y. Kan-On, Fisher wave fronts for the Lotka-Volterra competition model with diffusion,, Nonl. Anal. TMA, 28 (1997), 145. doi: 10.1016/0362-546X(95)00142-I. [9] K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains,, J. Diff. Eqns., 58 (1985), 15. doi: 10.1016/0022-0396(85)90020-8. [10] O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type,, Amer. Math. Soc., (1968). [11] G. M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific, (1996). doi: 10.1142/3302. [12] Z. G. Lin, A free boundary problem for a predator-prey model,, Nonlinearity, 20 (2007), 1883. doi: 10.1088/0951-7715/20/8/004. [13] Y. Morita and K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations,, SIAM J. Math. Anal., 40 (2009), 2217. doi: 10.1137/080723715. [14] C. V. Pao, Nonliear Parabolic and Elliptic Equations,, Plenum Press, (1992). [15] H. L. Smith, Monotone Dynamical Systems,, American Math. Soc., (1995). [16] M. X. Wang, On some free boundary problems of the prey-predator model,, J. Diff. Eqns., 256 (2014), 3365. doi: 10.1016/j.jde.2014.02.013. [17] J. F. Zhao and M. X. Wang, A free boundary problem for a predator-prey model with double free boundaries,, preprint., ().

show all references

##### References:
 [1] G. Bunting, Y. Du and K. Krakowski, Spreading speed revisited: Analysis of a free boundary model,, Netw. Heterog. Media, 7 (2012), 583. doi: 10.3934/nhm.2012.7.583. [2] X. F. Chen and A. Friedman, A free boundary problem arising in a model of wound healing,, SIAM J. Math. Anal., 32 (2000), 778. doi: 10.1137/S0036141099351693. [3] R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations,, John Wiley& Sons Ltd, (2003). doi: 10.1002/0470871296. [4] Y. Du and Z. M. Guo, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary II,, J. Diff. Eqns., 250 (2011), 4336. doi: 10.1016/j.jde.2011.02.011. [5] Y. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary,, SIAM J. Math. Anal., 42 (2010), 377. doi: 10.1137/090771089. [6] Y. Du and L. Ma, Logistic type equations on $\mathbbR^N$ by a squeezing method involving boundary blow-up solutions,, J. London Math. Soc., 64 (2001), 107. doi: 10.1017/S0024610701002289. [7] J.-S. Guo and C.-H. Wu, On a free boundary problem for a two-species weak competition system,, J. Dyn. Diff. Equat., 24 (2012), 873. doi: 10.1007/s10884-012-9267-0. [8] Y. Kan-On, Fisher wave fronts for the Lotka-Volterra competition model with diffusion,, Nonl. Anal. TMA, 28 (1997), 145. doi: 10.1016/0362-546X(95)00142-I. [9] K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains,, J. Diff. Eqns., 58 (1985), 15. doi: 10.1016/0022-0396(85)90020-8. [10] O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type,, Amer. Math. Soc., (1968). [11] G. M. Lieberman, Second Order Parabolic Differential Equations,, World Scientific, (1996). doi: 10.1142/3302. [12] Z. G. Lin, A free boundary problem for a predator-prey model,, Nonlinearity, 20 (2007), 1883. doi: 10.1088/0951-7715/20/8/004. [13] Y. Morita and K. Tachibana, An entire solution to the Lotka-Volterra competition-diffusion equations,, SIAM J. Math. Anal., 40 (2009), 2217. doi: 10.1137/080723715. [14] C. V. Pao, Nonliear Parabolic and Elliptic Equations,, Plenum Press, (1992). [15] H. L. Smith, Monotone Dynamical Systems,, American Math. Soc., (1995). [16] M. X. Wang, On some free boundary problems of the prey-predator model,, J. Diff. Eqns., 256 (2014), 3365. doi: 10.1016/j.jde.2014.02.013. [17] J. F. Zhao and M. X. Wang, A free boundary problem for a predator-prey model with double free boundaries,, preprint., ().
 [1] Jingli Ren, Dandan Zhu, Haiyan Wang. Spreading-vanishing dichotomy in information diffusion in online social networks with intervention. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-23. doi: 10.3934/dcdsb.2018240 [2] Fang Li, Xing Liang, Wenxian Shen. Diffusive KPP equations with free boundaries in time almost periodic environments: I. Spreading and vanishing dichotomy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3317-3338. doi: 10.3934/dcds.2016.36.3317 [3] Gary Bunting, Yihong Du, Krzysztof Krakowski. Spreading speed revisited: Analysis of a free boundary model. Networks & Heterogeneous Media, 2012, 7 (4) : 583-603. doi: 10.3934/nhm.2012.7.583 [4] Wenzhen Gan, Peng Zhou. A revisit to the diffusive logistic model with free boundary condition. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 837-847. doi: 10.3934/dcdsb.2016.21.837 [5] Rui Peng, Xiao-Qiang Zhao. The diffusive logistic model with a free boundary and seasonal succession. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2007-2031. doi: 10.3934/dcds.2013.33.2007 [6] Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441 [7] Micah Webster, Patrick Guidotti. Boundary dynamics of a two-dimensional diffusive free boundary problem. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 713-736. doi: 10.3934/dcds.2010.26.713 [8] Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067 [9] Jesús Ildefonso Díaz, L. Tello. On a climate model with a dynamic nonlinear diffusive boundary condition. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 253-262. doi: 10.3934/dcdss.2008.1.253 [10] Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109 [11] Yuzo Hosono. Traveling waves for a diffusive Lotka-Volterra competition model I: singular perturbations. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 79-95. doi: 10.3934/dcdsb.2003.3.79 [12] Wei-Jian Bo, Guo Lin. Asymptotic spreading of time periodic competition diffusion systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3901-3914. doi: 10.3934/dcdsb.2018116 [13] Qiaoling Chen, Fengquan Li, Feng Wang. A diffusive logistic problem with a free boundary in time-periodic environment: Favorable habitat or unfavorable habitat. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 13-35. doi: 10.3934/dcdsb.2016.21.13 [14] Jia-Feng Cao, Wan-Tong Li, Fei-Ying Yang. Dynamics of a nonlocal SIS epidemic model with free boundary. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 247-266. doi: 10.3934/dcdsb.2017013 [15] Yongzhi Xu. A free boundary problem model of ductal carcinoma in situ. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 337-348. doi: 10.3934/dcdsb.2004.4.337 [16] Donald L. DeAngelis, Bo Zhang. Effects of dispersal in a non-uniform environment on population dynamics and competition: A patch model approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3087-3104. doi: 10.3934/dcdsb.2014.19.3087 [17] Sze-Bi Hsu, Cheng-Che Li. A discrete-delayed model with plasmid-bearing, plasmid-free competition in a chemostat. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 699-718. doi: 10.3934/dcdsb.2005.5.699 [18] Eugene Kashdan, Svetlana Bunimovich-Mendrazitsky. Hybrid discrete-continuous model of invasive bladder cancer. Mathematical Biosciences & Engineering, 2013, 10 (3) : 729-742. doi: 10.3934/mbe.2013.10.729 [19] Yueding Yuan, Zhiming Guo, Moxun Tang. A nonlocal diffusion population model with age structure and Dirichlet boundary condition. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2095-2115. doi: 10.3934/cpaa.2015.14.2095 [20] Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-26. doi: 10.3934/dcdsb.2018223

2017 Impact Factor: 0.972