2014, 6(3): 279-296. doi: 10.3934/jgm.2014.6.279

Warped Poisson brackets on warped products

1. 

Laboratory of Algebra and Number Theory, Faculté de Mathématiques, USTHB, BP32, El-Alia, 16111 Bab-Ezzouar, Alger, Algeria, Algeria

2. 

Laboratory of Geometry, Analysis, Control and Applications, Université de Saïda, BP138, En-Nasr, 20000 Saïda, Algeria

Received  January 2013 Revised  August 2014 Published  September 2014

In this paper, we generalize the geometry of the product pseudo-Riemannian manifold equipped with the product Poisson structure ([10]) to the geometry of a warped product of pseudo-Riemannian manifolds equipped with a warped Poisson structure. We construct three bivector fields on a product manifold and show that each of them lead under certain conditions to a Poisson structure. One of these bivector fields will be called the warped bivector field. For a warped product of pseudo-Riemannian manifolds equipped with a warped bivector field, we compute the corresponding contravariant Levi-Civita connection and the curvatures associated with.
Citation: Yacine Aït Amrane, Rafik Nasri, Ahmed Zeglaoui. Warped Poisson brackets on warped products. Journal of Geometric Mechanics, 2014, 6 (3) : 279-296. doi: 10.3934/jgm.2014.6.279
References:
[1]

J. K. Beem, P. E. Ehrlich and Th. G. Powell, Warped product manifolds in relativity,, Selected Studies: Physics-astrophysics, (1982), 41.

[2]

R. L. Bishop and B. O'Neill, Manifolds of negative curvature,, Trans. Amer. Math. Soc., 145 (1969), 1. doi: 10.1090/S0002-9947-1969-0251664-4.

[3]

M. Boucetta, Compatibilité des structures pseudo-riemanniennes et des structures de Poisson,, C. R. Acad. Sci. Paris, 333 (2001), 763. doi: 10.1016/S0764-4442(01)02132-2.

[4]

M. Boucetta, Poisson manifolds with compatible pseudo-metric and pseudo-Riemannian Lie algebras,, Differential Geometry and its Applications, 20 (2004), 279. doi: 10.1016/j.difgeo.2003.10.013.

[5]

J.-P. Dufour and N. T. Zung, Poisson Structures and Their Normal Forms,, Progress in Mathematics, 242 (2005).

[6]

R. L. Fernandes, Connections in Poisson geometry I: Holonomy and invariants,, J. Diff. Geom., 54 (2000), 303.

[7]

E. Hawkins, Noncommutative rigidity,, Commun. Math. Phys., 246 (2004), 211. doi: 10.1007/s00220-004-1036-4.

[8]

E. Hawkins, The structure of noncommutative deformations,, J. Diff. Geom., 77 (2007), 385.

[9]

R. Nasri and M. Djaa, Sur la courbure des variétés riemanniennes produits,, Sciences et Technologie, A-24 (2006), 15.

[10]

R. Nasri and M. Djaa, On the geometry of the product Riemannian manifold with the Poisson structure,, International Electronic Journal of Geometry, 3 (2010), 1.

[11]

B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity,, Academic Press, (1983).

[12]

I. Vaisman, Lectures on the Geometry of Poisson Manifolds,, Progress in Mathematics, 118 (1994). doi: 10.1007/978-3-0348-8495-2.

show all references

References:
[1]

J. K. Beem, P. E. Ehrlich and Th. G. Powell, Warped product manifolds in relativity,, Selected Studies: Physics-astrophysics, (1982), 41.

[2]

R. L. Bishop and B. O'Neill, Manifolds of negative curvature,, Trans. Amer. Math. Soc., 145 (1969), 1. doi: 10.1090/S0002-9947-1969-0251664-4.

[3]

M. Boucetta, Compatibilité des structures pseudo-riemanniennes et des structures de Poisson,, C. R. Acad. Sci. Paris, 333 (2001), 763. doi: 10.1016/S0764-4442(01)02132-2.

[4]

M. Boucetta, Poisson manifolds with compatible pseudo-metric and pseudo-Riemannian Lie algebras,, Differential Geometry and its Applications, 20 (2004), 279. doi: 10.1016/j.difgeo.2003.10.013.

[5]

J.-P. Dufour and N. T. Zung, Poisson Structures and Their Normal Forms,, Progress in Mathematics, 242 (2005).

[6]

R. L. Fernandes, Connections in Poisson geometry I: Holonomy and invariants,, J. Diff. Geom., 54 (2000), 303.

[7]

E. Hawkins, Noncommutative rigidity,, Commun. Math. Phys., 246 (2004), 211. doi: 10.1007/s00220-004-1036-4.

[8]

E. Hawkins, The structure of noncommutative deformations,, J. Diff. Geom., 77 (2007), 385.

[9]

R. Nasri and M. Djaa, Sur la courbure des variétés riemanniennes produits,, Sciences et Technologie, A-24 (2006), 15.

[10]

R. Nasri and M. Djaa, On the geometry of the product Riemannian manifold with the Poisson structure,, International Electronic Journal of Geometry, 3 (2010), 1.

[11]

B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity,, Academic Press, (1983).

[12]

I. Vaisman, Lectures on the Geometry of Poisson Manifolds,, Progress in Mathematics, 118 (1994). doi: 10.1007/978-3-0348-8495-2.

[1]

Boris Kolev. Poisson brackets in Hydrodynamics. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 555-574. doi: 10.3934/dcds.2007.19.555

[2]

Luis García-Naranjo. Reduction of almost Poisson brackets and Hamiltonization of the Chaplygin sphere. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 37-60. doi: 10.3934/dcdss.2010.3.37

[3]

Michael Entov, Leonid Polterovich, Daniel Rosen. Poisson brackets, quasi-states and symplectic integrators. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1455-1468. doi: 10.3934/dcds.2010.28.1455

[4]

Anat Amir. Sharpness of Zapolsky's inequality for quasi-states and Poisson brackets. Electronic Research Announcements, 2011, 18: 61-68. doi: 10.3934/era.2011.18.61

[5]

David M. A. Stuart. Solitons on pseudo-Riemannian manifolds: stability and motion. Electronic Research Announcements, 2000, 6: 75-89.

[6]

Chi-Kwong Fok. Picard group of isotropic realizations of twisted Poisson manifolds. Journal of Geometric Mechanics, 2016, 8 (2) : 179-197. doi: 10.3934/jgm.2016003

[7]

Manuel de León, David Martín de Diego, Miguel Vaquero. A Hamilton-Jacobi theory on Poisson manifolds. Journal of Geometric Mechanics, 2014, 6 (1) : 121-140. doi: 10.3934/jgm.2014.6.121

[8]

Antonio Azzollini, Pietro d’Avenia, Valeria Luisi. Generalized Schrödinger-Poisson type systems. Communications on Pure & Applied Analysis, 2013, 12 (2) : 867-879. doi: 10.3934/cpaa.2013.12.867

[9]

Pierre-Damien Thizy. Schrödinger-Poisson systems in $4$-dimensional closed manifolds. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2257-2284. doi: 10.3934/dcds.2016.36.2257

[10]

C. Davini, F. Jourdan. Approximations of degree zero in the Poisson problem. Communications on Pure & Applied Analysis, 2005, 4 (2) : 267-281. doi: 10.3934/cpaa.2005.4.267

[11]

Lubomir Kostal, Shigeru Shinomoto. Efficient information transfer by Poisson neurons. Mathematical Biosciences & Engineering, 2016, 13 (3) : 509-520. doi: 10.3934/mbe.2016004

[12]

Oliver Knill. A deterministic displacement theorem for Poisson processes. Electronic Research Announcements, 1997, 3: 110-113.

[13]

Frol Zapolsky. On almost Poisson commutativity in dimension two. Electronic Research Announcements, 2010, 17: 155-160. doi: 10.3934/era.2010.17.155

[14]

Dmitry Tamarkin. Quantization of Poisson structures on R^2. Electronic Research Announcements, 1997, 3: 119-120.

[15]

Sobhan Seyfaddini. Spectral killers and Poisson bracket invariants. Journal of Modern Dynamics, 2015, 9: 51-66. doi: 10.3934/jmd.2015.9.51

[16]

Victor A. Kovtunenko, Anna V. Zubkova. Mathematical modeling of a discontinuous solution of the generalized Poisson-Nernst-Planck problem in a two-phase medium. Kinetic & Related Models, 2018, 11 (1) : 119-135. doi: 10.3934/krm.2018007

[17]

Frol Zapolsky. Quasi-states and the Poisson bracket on surfaces. Journal of Modern Dynamics, 2007, 1 (3) : 465-475. doi: 10.3934/jmd.2007.1.465

[18]

Wolfgang Arendt, Daniel Daners. Varying domains: Stability of the Dirichlet and the Poisson problem. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 21-39. doi: 10.3934/dcds.2008.21.21

[19]

Nicola Sansonetto, Daniele Sepe. Twisted isotropic realisations of twisted Poisson structures. Journal of Geometric Mechanics, 2013, 5 (2) : 233-256. doi: 10.3934/jgm.2013.5.233

[20]

Gusein Sh. Guseinov. Spectral method for deriving multivariate Poisson summation formulae. Communications on Pure & Applied Analysis, 2013, 12 (1) : 359-373. doi: 10.3934/cpaa.2013.12.359

2016 Impact Factor: 0.857

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]