2014, 8(3): 831-844. doi: 10.3934/ipi.2014.8.831

Perfect radar pulse compression via unimodular fourier multipliers

1. 

University of Oulu, Sodankylä Geophysical Observatory, Tähteläntie 62, FI-99600 Sodankylä, Finland

2. 

University of Helsinki, Department of Mathematics and Statistics, Gustaf Hällströmin katu 2b, FI-00014 University of Helsinki

3. 

University of Oulu, Department of Physics, P.O.Box 3000, FI-90014 University of Oulu, Finland

Received  March 2014 Revised  April 2014 Published  August 2014

We propose a novel framework for studying radar pulse compression with continuous waveforms. Our methodology is based on the recent developments of the mathematical theory of comparison of measurements. First we show that a radar measurement of a time-independent but spatially distributed radar target is rigorously more informative than another one if the modulus of the Fourier transform of the radar code is greater than or equal to the modulus of the Fourier transform of the second radar code. We then motivate the study by spreading a Gaussian pulse into a longer pulse with smaller peak power and re-compressing the spread pulse into its original form. We then review the basic concepts of the theory and pose the conditions for statistically equivalent radar experiments. We show that such experiments can be constructed by spreading the radar pulses via multiplication of their Fourier transforms by unimodular functions. Finally, we show by analytical and numerical methods some examples of the spreading and re-compression of certain simple pulses.
Citation: Lassi Roininen, Markku S. Lehtinen, Petteri Piiroinen, Ilkka I. Virtanen. Perfect radar pulse compression via unimodular fourier multipliers. Inverse Problems & Imaging, 2014, 8 (3) : 831-844. doi: 10.3934/ipi.2014.8.831
References:
[1]

R. H. Barker, Group synchronizing of binary digital systems,, in Communication Theory (ed. W. Jackson), (1953), 273.

[2]

D. Blackwell, Comparison of experiments,, in Proc. Second Berkeley Symposium on Math. Stat. Probab., (1950), 93.

[3]

B. Damtie, M. Lehtinen, M. Orispää and J. Vierinen, Mismatched filtering of aperiodic quadriphase codes,, IEEE Trans. Inform. Theory, 54 (2008), 1742. doi: 10.1109/TIT.2008.917655.

[4]

B. Damtie and M. S. Lehtinen, Comparison of the performance of different radar pulse compression techniques in an incoherent scatter radar measurement,, Ann. Geophys., 27 (2009), 797. doi: 10.5194/angeo-27-797-2009.

[5]

M. J. E. Golay, Complementary series,, IRE Trans., IT-7 (1961), 82.

[6]

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products,, $7^{th}$ edition, (2007).

[7]

A. Huuskonen and M. S. Lehtinen, The accuracy of incoherent scatter measurements: Error estimates valid for high signal levels,, J. Atmos. Sol.-Terr. Phy., 58 (1996), 453. doi: 10.1016/0021-9169(95)00048-8.

[8]

K. E. Iverson, A Programming Language,, New York: Wiley, (1962).

[9]

J. R. Klauder, A. C. Price, S. Darlington and W. J. Albersheim, The theory and design of chirp radars,, The Bell System Technical Journal, 39 (1960), 745. doi: 10.1002/j.1538-7305.1960.tb03942.x.

[10]

D. Knuth, Two notes on notation,, Amer. Math. Monthly, 99 (1992), 403. doi: 10.2307/2325085.

[11]

L. Le Cam, Sufficiency and approximate sufficiency,, Ann. Math. Statist., 35 (1964), 1419. doi: 10.1214/aoms/1177700372.

[12]

L. Le Cam, Asymptotic Methods in Statistical Decision Theory,, Springer Series in Statistics, (1986). doi: 10.1007/978-1-4612-4946-7.

[13]

M. S. Lehtinen, On optimization of incoherent scatter measurements,, Adv. Space Res., 9 (1989), 133. doi: 10.1016/0273-1177(89)90351-7.

[14]

M. S. Lehtinen, B. Damtie and T. Nygrén, Optimal binary phase codes and sidelobe-free decoding filters with application to incoherent scatter radar,, Ann. Geophys., 22 (2004), 1623. doi: 10.5194/angeo-22-1623-2004.

[15]

M. S. Lehtinen, I. I. Virtanen and J. Vierinen, Fast comparison of IS radar code sequences for lag profile inversion,, Ann. Geophys., 26 (2008), 2291. doi: 10.5194/angeo-26-2291-2008.

[16]

M. Lehtinen, B. Damtie, P. Piiroinen and M. Orispää, Perfect and almost perfect pulse compression codes for range spread radar targets,, Inverse Problems and Imaging, 3 (2009), 465. doi: 10.3934/ipi.2009.3.465.

[17]

M. S. Lehtinen and B. Damtie, Radar baud length optimisation of spatially incoherent time-independent targets,, J. Atmos. Sol.-Terr. Phy., 105-106 (2013), 105. doi: 10.1016/j.jastp.2012.10.010.

[18]

N. Levanon and E. Mozeson, Radar Signals,, John Wiley & Sons, (2004). doi: 10.1002/0471663085.

[19]

P. Piiroinen, Statistical measurements, experiments and applications,, Ann. Acad. Sci. Fenn. Math. Diss. No., 143 (2005).

[20]

J. Pirttilä, M. S. Lehtinen, A. Huuskonen and M. Markkanen, A proposed solution to the range-doppler dilemma of weather radar measurements by using the SMPRF codes, practical results, and a comparison with operational measurements,, J. Appl. Meteor., 44 (2005), 1375. doi: 10.1175/JAM2288.1.

[21]

L. Roininen and M. S. Lehtinen, Perfect pulse-compression coding via ARMA algorithms and unimodular transfer functions,, Inverse Problems and Imaging, 7 (2013), 649. doi: 10.3934/ipi.2013.7.649.

[22]

H. H. Schaefer, Banach Lattices and Positive Operators,, Die Grundlehren der mathematischen Wissenschaften, (1974).

[23]

C. E. Shannon, Communication in the presence of noise,, Proc. I.R.E., 37 (1949), 10.

[24]

A. N. Shiryaev and V. G. Spokoiny, Statistical Experiments and Decisions,, Advanced Series on Statistical Science & Applied Probability, (2000). doi: 10.1142/9789812779243.

[25]

M. I. Skolnik, Radar Handbook,, $2^{nd}$ edition, (1990).

[26]

E. Torgersen, Comparison of Statistical Experiments,, Encyclopedia of Mathematics and its Applications, (1991). doi: 10.1017/CBO9780511666353.

[27]

H. L. van Trees, Detection, Estimation and Modulation theory, part III,, John Wiley and Sons, (1971).

[28]

J. Vierinen, On Statistical Theory of Radar Measurements,, Ph.D. Dissertation, (2012).

[29]

A. C. Zaanen, Introduction to Operator Theory in Riesz Spaces,, Springer-Verlag, (1997). doi: 10.1007/978-3-642-60637-3.

show all references

References:
[1]

R. H. Barker, Group synchronizing of binary digital systems,, in Communication Theory (ed. W. Jackson), (1953), 273.

[2]

D. Blackwell, Comparison of experiments,, in Proc. Second Berkeley Symposium on Math. Stat. Probab., (1950), 93.

[3]

B. Damtie, M. Lehtinen, M. Orispää and J. Vierinen, Mismatched filtering of aperiodic quadriphase codes,, IEEE Trans. Inform. Theory, 54 (2008), 1742. doi: 10.1109/TIT.2008.917655.

[4]

B. Damtie and M. S. Lehtinen, Comparison of the performance of different radar pulse compression techniques in an incoherent scatter radar measurement,, Ann. Geophys., 27 (2009), 797. doi: 10.5194/angeo-27-797-2009.

[5]

M. J. E. Golay, Complementary series,, IRE Trans., IT-7 (1961), 82.

[6]

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products,, $7^{th}$ edition, (2007).

[7]

A. Huuskonen and M. S. Lehtinen, The accuracy of incoherent scatter measurements: Error estimates valid for high signal levels,, J. Atmos. Sol.-Terr. Phy., 58 (1996), 453. doi: 10.1016/0021-9169(95)00048-8.

[8]

K. E. Iverson, A Programming Language,, New York: Wiley, (1962).

[9]

J. R. Klauder, A. C. Price, S. Darlington and W. J. Albersheim, The theory and design of chirp radars,, The Bell System Technical Journal, 39 (1960), 745. doi: 10.1002/j.1538-7305.1960.tb03942.x.

[10]

D. Knuth, Two notes on notation,, Amer. Math. Monthly, 99 (1992), 403. doi: 10.2307/2325085.

[11]

L. Le Cam, Sufficiency and approximate sufficiency,, Ann. Math. Statist., 35 (1964), 1419. doi: 10.1214/aoms/1177700372.

[12]

L. Le Cam, Asymptotic Methods in Statistical Decision Theory,, Springer Series in Statistics, (1986). doi: 10.1007/978-1-4612-4946-7.

[13]

M. S. Lehtinen, On optimization of incoherent scatter measurements,, Adv. Space Res., 9 (1989), 133. doi: 10.1016/0273-1177(89)90351-7.

[14]

M. S. Lehtinen, B. Damtie and T. Nygrén, Optimal binary phase codes and sidelobe-free decoding filters with application to incoherent scatter radar,, Ann. Geophys., 22 (2004), 1623. doi: 10.5194/angeo-22-1623-2004.

[15]

M. S. Lehtinen, I. I. Virtanen and J. Vierinen, Fast comparison of IS radar code sequences for lag profile inversion,, Ann. Geophys., 26 (2008), 2291. doi: 10.5194/angeo-26-2291-2008.

[16]

M. Lehtinen, B. Damtie, P. Piiroinen and M. Orispää, Perfect and almost perfect pulse compression codes for range spread radar targets,, Inverse Problems and Imaging, 3 (2009), 465. doi: 10.3934/ipi.2009.3.465.

[17]

M. S. Lehtinen and B. Damtie, Radar baud length optimisation of spatially incoherent time-independent targets,, J. Atmos. Sol.-Terr. Phy., 105-106 (2013), 105. doi: 10.1016/j.jastp.2012.10.010.

[18]

N. Levanon and E. Mozeson, Radar Signals,, John Wiley & Sons, (2004). doi: 10.1002/0471663085.

[19]

P. Piiroinen, Statistical measurements, experiments and applications,, Ann. Acad. Sci. Fenn. Math. Diss. No., 143 (2005).

[20]

J. Pirttilä, M. S. Lehtinen, A. Huuskonen and M. Markkanen, A proposed solution to the range-doppler dilemma of weather radar measurements by using the SMPRF codes, practical results, and a comparison with operational measurements,, J. Appl. Meteor., 44 (2005), 1375. doi: 10.1175/JAM2288.1.

[21]

L. Roininen and M. S. Lehtinen, Perfect pulse-compression coding via ARMA algorithms and unimodular transfer functions,, Inverse Problems and Imaging, 7 (2013), 649. doi: 10.3934/ipi.2013.7.649.

[22]

H. H. Schaefer, Banach Lattices and Positive Operators,, Die Grundlehren der mathematischen Wissenschaften, (1974).

[23]

C. E. Shannon, Communication in the presence of noise,, Proc. I.R.E., 37 (1949), 10.

[24]

A. N. Shiryaev and V. G. Spokoiny, Statistical Experiments and Decisions,, Advanced Series on Statistical Science & Applied Probability, (2000). doi: 10.1142/9789812779243.

[25]

M. I. Skolnik, Radar Handbook,, $2^{nd}$ edition, (1990).

[26]

E. Torgersen, Comparison of Statistical Experiments,, Encyclopedia of Mathematics and its Applications, (1991). doi: 10.1017/CBO9780511666353.

[27]

H. L. van Trees, Detection, Estimation and Modulation theory, part III,, John Wiley and Sons, (1971).

[28]

J. Vierinen, On Statistical Theory of Radar Measurements,, Ph.D. Dissertation, (2012).

[29]

A. C. Zaanen, Introduction to Operator Theory in Riesz Spaces,, Springer-Verlag, (1997). doi: 10.1007/978-3-642-60637-3.

[1]

Markku Lehtinen, Baylie Damtie, Petteri Piiroinen, Mikko Orispää. Perfect and almost perfect pulse compression codes for range spread radar targets. Inverse Problems & Imaging, 2009, 3 (3) : 465-486. doi: 10.3934/ipi.2009.3.465

[2]

Lassi Roininen, Markku S. Lehtinen. Perfect pulse-compression coding via ARMA algorithms and unimodular transfer functions. Inverse Problems & Imaging, 2013, 7 (2) : 649-661. doi: 10.3934/ipi.2013.7.649

[3]

Eric Falcon. Laboratory experiments on wave turbulence. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 819-840. doi: 10.3934/dcdsb.2010.13.819

[4]

Stefano Galatolo. Orbit complexity and data compression. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 477-486. doi: 10.3934/dcds.2001.7.477

[5]

Philip N. J. Eagle, Steven D. Galbraith, John B. Ong. Point compression for Koblitz elliptic curves. Advances in Mathematics of Communications, 2011, 5 (1) : 1-10. doi: 10.3934/amc.2011.5.1

[6]

Rafail Krichevskii and Vladimir Potapov. Compression and restoration of square integrable functions. Electronic Research Announcements, 1996, 2: 42-49.

[7]

Matthias Ngwa, Ephraim Agyingi. A mathematical model of the compression of a spinal disc. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1061-1083. doi: 10.3934/mbe.2011.8.1061

[8]

Joseph D. Fehribach. Using numerical experiments to discover theorems in differential equations. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 495-504. doi: 10.3934/dcdsb.2003.3.495

[9]

Alan J. Terry. Pulse vaccination strategies in a metapopulation SIR model. Mathematical Biosciences & Engineering, 2010, 7 (2) : 455-477. doi: 10.3934/mbe.2010.7.455

[10]

G. Bellettini, Giorgio Fusco, Nicola Guglielmi. A concept of solution and numerical experiments for forward-backward diffusion equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 783-842. doi: 10.3934/dcds.2006.16.783

[11]

Gabriella Bretti, Maya Briani, Emiliano Cristiani. An easy-to-use algorithm for simulating traffic flow on networks: Numerical experiments. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 379-394. doi: 10.3934/dcdss.2014.7.379

[12]

Maide Bucolo, Federica Di Grazia, Luigi Fortuna, Mattia Frasca, Francesca Sapuppo. An environment for complex behaviour detection in bio-potential experiments. Mathematical Biosciences & Engineering, 2008, 5 (2) : 261-276. doi: 10.3934/mbe.2008.5.261

[13]

Amin Boumenir, Vu Kim Tuan. Recovery of the heat coefficient by two measurements. Inverse Problems & Imaging, 2011, 5 (4) : 775-791. doi: 10.3934/ipi.2011.5.775

[14]

Gang Bao, Jun Lai. Radar cross section reduction of a cavity in the ground plane: TE polarization. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 419-434. doi: 10.3934/dcdss.2015.8.419

[15]

Venkateswaran P. Krishnan, Eric Todd Quinto. Microlocal aspects of common offset synthetic aperture radar imaging. Inverse Problems & Imaging, 2011, 5 (3) : 659-674. doi: 10.3934/ipi.2011.5.659

[16]

Stilianos Louca, Fatihcan M. Atay. Spatially structured networks of pulse-coupled phase oscillators on metric spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3703-3745. doi: 10.3934/dcds.2014.34.3703

[17]

Shujing Gao, Dehui Xie, Lansun Chen. Pulse vaccination strategy in a delayed sir epidemic model with vertical transmission. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 77-86. doi: 10.3934/dcdsb.2007.7.77

[18]

Panagiotes A. Voltairas, Antonios Charalambopoulos, Dimitrios I. Fotiadis, Lambros K. Michalis. A quasi-lumped model for the peripheral distortion of the arterial pulse. Mathematical Biosciences & Engineering, 2012, 9 (1) : 175-198. doi: 10.3934/mbe.2012.9.175

[19]

Shin-Ichiro Ei, Toshio Ishimoto. Effect of boundary conditions on the dynamics of a pulse solution for reaction-diffusion systems. Networks & Heterogeneous Media, 2013, 8 (1) : 191-209. doi: 10.3934/nhm.2013.8.191

[20]

Guillaume Bal, Ian Langmore, François Monard. Inverse transport with isotropic sources and angularly averaged measurements. Inverse Problems & Imaging, 2008, 2 (1) : 23-42. doi: 10.3934/ipi.2008.2.23

2016 Impact Factor: 1.094

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

[Back to Top]