2014, 8(1): 61-73. doi: 10.3934/jmd.2014.8.61

Loci in strata of meromorphic quadratic differentials with fully degenerate Lyapunov spectrum

1. 

I2M, Université d’Aix-Marseille, 39 rue F. Joliot- Curie, 13453 Marseille Cedex 20, France, France

Received  July 2013 Published  July 2014

We construct explicit closed $\mathrm{GL}(2; \mathbb{R})$-invariant loci in strata of meromorphic quadratic differentials of arbitrarily large dimension with fully degenerate Lyapunov spectrum. This answers a question of Forni-Matheus-Zorich.
Citation: Julien Grivaux, Pascal Hubert. Loci in strata of meromorphic quadratic differentials with fully degenerate Lyapunov spectrum. Journal of Modern Dynamics, 2014, 8 (1) : 61-73. doi: 10.3934/jmd.2014.8.61
References:
[1]

D. Aulicino, Affine invariant submanifolds with completely degenerate Kontsevich-Zorich spectrum,, preprint, (2013).

[2]

I. I. Bouw and M. Möller, Teichmüller curves, triangle groups, and Lyapunov exponents,, Ann. of Math. (2), 172 (2010), 139. doi: 10.4007/annals.2010.172.139.

[3]

J. Chaika and A. Eskin, Every flat surface is Birkhoff and Osceledets generic in almost every direction,, preprint, (2013).

[4]

A. Eskin, M. Kontsevich and A. Zorich, Lyapunov spectrum of square-tiled cyclic covers,, J. Mod. Dyn., 5 (2011), 319. doi: 10.3934/jmd.2011.5.319.

[5]

A. Eskin, M. Kontsevich and A. Zorich, Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow,, Publications mathématiques de l'IHÉS, (2013), 1. doi: 10.1007/s10240-013-0060-3.

[6]

A. Eskin and M. Mirzakhani, Invariant and stationary measures for the SL(2,R) action on moduli space,, preprint, (2013).

[7]

H. M. Farkas and I. Kra, Riemann Surfaces,, Second edition, (1992). doi: 10.1007/978-1-4612-2034-3.

[8]

G. Forni, C. Matheus and A. Zorich, Square-tiled cyclic covers,, J. Mod. Dyn., 5 (2011), 285. doi: 10.3934/jmd.2011.5.285.

[9]

G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus,, Ann. of Math. (2), 155 (2002), 1. doi: 10.2307/3062150.

[10]

G. Forni, On the Lyapunov exponents of the Kontsevich-Zorich cocycle,, in Handbook of Dynamical Systems, (2006), 549. doi: 10.1016/S1874-575X(06)80033-0.

[11]

I. Kra, On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces,, Acta Math., 146 (1981), 231. doi: 10.1007/BF02392465.

[12]

M. Möller, Shimura and Teichmüller curves,, J. Mod. Dyn., 5 (2011), 1. doi: 10.3934/jmd.2011.5.1.

[13]

A. Wright, Schwarz triangle mappings and Teichmüller curves: Abelian square-tiled surfaces,, J. Mod. Dyn., 6 (2012), 405. doi: 10.3934/jmd.2012.6.405.

[14]

A. Zorich, Deviation for interval-exchange transformations,, Ergodic Theory Dynam. Systems, 17 (1997), 1477. doi: 10.1017/S0143385797086215.

[15]

A. Zorich, How do the leaves of a closed $1$-form wind around a surface?,, in Pseudoperiodic Topology, (1999), 135.

show all references

References:
[1]

D. Aulicino, Affine invariant submanifolds with completely degenerate Kontsevich-Zorich spectrum,, preprint, (2013).

[2]

I. I. Bouw and M. Möller, Teichmüller curves, triangle groups, and Lyapunov exponents,, Ann. of Math. (2), 172 (2010), 139. doi: 10.4007/annals.2010.172.139.

[3]

J. Chaika and A. Eskin, Every flat surface is Birkhoff and Osceledets generic in almost every direction,, preprint, (2013).

[4]

A. Eskin, M. Kontsevich and A. Zorich, Lyapunov spectrum of square-tiled cyclic covers,, J. Mod. Dyn., 5 (2011), 319. doi: 10.3934/jmd.2011.5.319.

[5]

A. Eskin, M. Kontsevich and A. Zorich, Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow,, Publications mathématiques de l'IHÉS, (2013), 1. doi: 10.1007/s10240-013-0060-3.

[6]

A. Eskin and M. Mirzakhani, Invariant and stationary measures for the SL(2,R) action on moduli space,, preprint, (2013).

[7]

H. M. Farkas and I. Kra, Riemann Surfaces,, Second edition, (1992). doi: 10.1007/978-1-4612-2034-3.

[8]

G. Forni, C. Matheus and A. Zorich, Square-tiled cyclic covers,, J. Mod. Dyn., 5 (2011), 285. doi: 10.3934/jmd.2011.5.285.

[9]

G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus,, Ann. of Math. (2), 155 (2002), 1. doi: 10.2307/3062150.

[10]

G. Forni, On the Lyapunov exponents of the Kontsevich-Zorich cocycle,, in Handbook of Dynamical Systems, (2006), 549. doi: 10.1016/S1874-575X(06)80033-0.

[11]

I. Kra, On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces,, Acta Math., 146 (1981), 231. doi: 10.1007/BF02392465.

[12]

M. Möller, Shimura and Teichmüller curves,, J. Mod. Dyn., 5 (2011), 1. doi: 10.3934/jmd.2011.5.1.

[13]

A. Wright, Schwarz triangle mappings and Teichmüller curves: Abelian square-tiled surfaces,, J. Mod. Dyn., 6 (2012), 405. doi: 10.3934/jmd.2012.6.405.

[14]

A. Zorich, Deviation for interval-exchange transformations,, Ergodic Theory Dynam. Systems, 17 (1997), 1477. doi: 10.1017/S0143385797086215.

[15]

A. Zorich, How do the leaves of a closed $1$-form wind around a surface?,, in Pseudoperiodic Topology, (1999), 135.

[1]

Jonathan Chaika, Yitwah Cheung, Howard Masur. Winning games for bounded geodesics in moduli spaces of quadratic differentials. Journal of Modern Dynamics, 2013, 7 (3) : 395-427. doi: 10.3934/jmd.2013.7.395

[2]

Anton Zorich. Explicit Jenkins-Strebel representatives of all strata of Abelian and quadratic differentials. Journal of Modern Dynamics, 2008, 2 (1) : 139-185. doi: 10.3934/jmd.2008.2.139

[3]

Corentin Boissy. Classification of Rauzy classes in the moduli space of Abelian and quadratic differentials. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3433-3457. doi: 10.3934/dcds.2012.32.3433

[4]

Alex Eskin, Maxim Kontsevich, Anton Zorich. Lyapunov spectrum of square-tiled cyclic covers. Journal of Modern Dynamics, 2011, 5 (2) : 319-353. doi: 10.3934/jmd.2011.5.319

[5]

Keith Burns, Katrin Gelfert. Lyapunov spectrum for geodesic flows of rank 1 surfaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1841-1872. doi: 10.3934/dcds.2014.34.1841

[6]

Luis Barreira, Claudia Valls. Quadratic Lyapunov sequences and arbitrary growth rates. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 63-74. doi: 10.3934/dcds.2010.26.63

[7]

Jian-Hua Zheng. Dynamics of hyperbolic meromorphic functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2273-2298. doi: 10.3934/dcds.2015.35.2273

[8]

Gisella Croce. An elliptic problem with degenerate coercivity and a singular quadratic gradient lower order term. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 507-530. doi: 10.3934/dcdss.2012.5.507

[9]

Freddy Dumortier, Christiane Rousseau. Study of the cyclicity of some degenerate graphics inside quadratic systems. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1133-1157. doi: 10.3934/cpaa.2009.8.1133

[10]

Zuxing Xuan. On conformal measures of parabolic meromorphic functions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 249-257. doi: 10.3934/dcdsb.2015.20.249

[11]

Agnieszka Badeńska. Measure rigidity for some transcendental meromorphic functions. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2375-2402. doi: 10.3934/dcds.2012.32.2375

[12]

Ferrán Valdez. Veech groups, irrational billiards and stable abelian differentials. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 1055-1063. doi: 10.3934/dcds.2012.32.1055

[13]

Dawei Chen. Strata of abelian differentials and the Teichmüller dynamics. Journal of Modern Dynamics, 2013, 7 (1) : 135-152. doi: 10.3934/jmd.2013.7.135

[14]

C. T. Cremins, G. Infante. A semilinear $A$-spectrum. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 235-242. doi: 10.3934/dcdss.2008.1.235

[15]

Juan J. Morales-Ruiz, Sergi Simon. On the meromorphic non-integrability of some $N$-body problems. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1225-1273. doi: 10.3934/dcds.2009.24.1225

[16]

Shahar Nevo, Xuecheng Pang and Lawrence Zalcman. Picard-Hayman behavior of derivatives of meromorphic functions with multiple zeros. Electronic Research Announcements, 2006, 12: 37-43.

[17]

Natalija Sergejeva. On the unusual Fucik spectrum. Conference Publications, 2007, 2007 (Special) : 920-926. doi: 10.3934/proc.2007.2007.920

[18]

Umesh V. Dubey, Vivek M. Mallick. Spectrum of some triangulated categories. Electronic Research Announcements, 2011, 18: 50-53. doi: 10.3934/era.2011.18.50

[19]

Dmitry Dolgopyat, Dmitry Jakobson. On small gaps in the length spectrum. Journal of Modern Dynamics, 2016, 10: 339-352. doi: 10.3934/jmd.2016.10.339

[20]

David Damanik, Anton Gorodetski. The spectrum of the weakly coupled Fibonacci Hamiltonian. Electronic Research Announcements, 2009, 16: 23-29. doi: 10.3934/era.2009.16.23

2016 Impact Factor: 0.706

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]