2014, 8(1): 25-59. doi: 10.3934/jmd.2014.8.25

Counting orbits of integral points in families of affine homogeneous varieties and diagonal flows

1. 

School of Mathematics, University of Bristol, Bristol BS8 1TW

2. 

Département de mathématique, UMR 8628 CNRS, Bât. 425, Université Paris-Sud, 91405 ORSAY Cedex, France

Received  June 2013 Published  July 2014

In this paper, we study the distribution of integral points on parametric families of affine homogeneous varieties. By the work of Borel and Harish-Chandra, the set of integral points on each such variety consists of finitely many orbits of arithmetic groups, and we establish an asymptotic formula (on average) for the number of the orbits indexed by their Siegel weights. In particular, we deduce asymptotic formulas for the number of inequivalent integral representations by decomposable forms and by norm forms in division algebras, and for the weighted number of equivalence classes of integral points on sections of quadrics. Our arguments use the exponential mixing property of diagonal flows on homogeneous spaces.
Citation: Alexander Gorodnik, Frédéric Paulin. Counting orbits of integral points in families of affine homogeneous varieties and diagonal flows. Journal of Modern Dynamics, 2014, 8 (1) : 25-59. doi: 10.3934/jmd.2014.8.25
References:
[1]

T. Apostol, Introduction to Analytic Number Theory,, Undergrad. Texts Math., (1976).

[2]

M. Babillot, Points entiers et groupes discrets: De l'analyse aux systèmes dynamiques,, in Rigidité, (2002), 1.

[3]

B. Bekka, P. de la Harpe and A. Valette, Kazhdan's Property (T),, New Math. Mono., (2008). doi: 10.1017/CBO9780511542749.

[4]

Y. Benoist and H. Oh, Effective equidistribution of $S$-integral points on symmetric varieties,, Ann. Inst. Fourier (Grenoble), 62 (2012), 1889. doi: 10.5802/aif.2738.

[5]

A. Borel, Ensembles fundamentaux pour les groupes arithmétiques,, in Colloque sur la Théorie des Groupes Algébriques (Bruxelles, (1962), 23.

[6]

A. Borel, Introduction aux Groupes Arithmétiques,, Publications de l'Institut de Mathématique de l'Université de Strasbourg, (1341).

[7]

A. Borel, Linear Algebraic Groups,, 2nd edition, (1991). doi: 10.1007/978-1-4612-0941-6.

[8]

A. Borel, Reduction theory for arithmetic groups,, in Algebraic Groups and Discontinuous Subgroups (eds. A. Borel and G. D. Mostow) (Proc. Sympos. Pure Math. Boulder, (1965), 20.

[9]

A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups,, Ann. of Math. (2), 75 (1962), 485. doi: 10.2307/1970210.

[10]

A. Borel and L. Ji, Compactifications of Symmetric and Locally Symmetric Spaces,, Mathematics: Theory & Applications, (2006).

[11]

M. Borovoi and Z. Rudnick, Hardy-Littlewood varieties and semisimple groups,, Invent. Math., 119 (1995), 37. doi: 10.1007/BF01245174.

[12]

L. Clozel, Démonstration de la conjecture $\tau$,, Invent. Math., 151 (2003), 297. doi: 10.1007/s00222-002-0253-8.

[13]

H. Cohn, A Second Course in Number Theory,, Wiley, (1962).

[14]

J.-L. Colliot-Thélène and F. Xu, Brauer-Manin obstruction for integral points of homogeneous spaces and representation by integral quadratic forms,, Compositio Math., 145 (2009), 309. doi: 10.1112/S0010437X0800376X.

[15]

M. Cowling, Sur les coefficients des représentations unitaires des groupes de Lie simples,, in Analyse Harmonique sur les Groupes de Lie (Sém. Nancy-Strasbourg 1976-1978), (1979), 1976.

[16]

W. Duke, Z. Rudnick and P. Sarnak, Density of integer points on affine homogeneous varieties,, Duke Math. J., 71 (1993), 143. doi: 10.1215/S0012-7094-93-07107-4.

[17]

A. Eskin and C. McMullen, Mixing, counting, and equidistribution in Lie groups,, Duke Math. J., 71 (1993), 181. doi: 10.1215/S0012-7094-93-07108-6.

[18]

A. Eskin, S. Mozes and N. Shah, Unipotent flows and counting lattice points on homogeneous varieties,, Ann. of Math. (2), 143 (1996), 253. doi: 10.2307/2118644.

[19]

A. Eskin and H. Oh, Representations of integers by an invariant polynomial and unipotent flows,, Duke Math. J., 135 (2006), 481. doi: 10.1215/S0012-7094-06-13533-0.

[20]

A. Eskin, Z. Rudnick and P. Sarnak, A proof of Siegel's weight formula,, Internat. Math. Res. Notices, 5 (1991), 65. doi: 10.1155/S1073792891000090.

[21]

W. T. Gan and H. Oh, Equidistribution of integer points on a family of homogeneous varieties: A problem of Linnik,, Compositio Math., 136 (2003), 323. doi: 10.1023/A:1023256605535.

[22]

A. Gorodnik and H. Oh, Rational points on homogeneous varieties and equidistribution of adelic periods,, Geom. Funct. Anal., 21 (2011), 319. doi: 10.1007/s00039-011-0113-z.

[23]

K. Györy, On the distribution of solutions of decomposable form equations,, in Number Theory in Progress, (1997), 237.

[24]

M. Hirsch, Differential Topology,, Grad. Texts Math., (1976).

[25]

D. Kelmer and P. Sarnak, Strong spectral gaps for compact quotients of products of $ PSL(2,\RR)$,, J. Euro. Math. Soc., 11 (2009), 283. doi: 10.4171/JEMS/151.

[26]

T. Kimura, Introduction to Prehomogeneous Vector Spaces,, Transl. Math. Mono., (2003).

[27]

D. Kleinbock and G. Margulis, Bounded orbits of nonquasiunipotent flows on homogeneous spaces,, in Sinaĭ's Moscow Seminar on Dynamical Systems, (1996), 141.

[28]

D. Kleinbock and G. Margulis, Logarithm laws for flows on homogeneous spaces,, Invent. Math., 138 (1999), 451. doi: 10.1007/s002220050350.

[29]

H. Koch, Number Theory: Algebraic Numbers and Functions,, Grad. Stud. Math., (2000).

[30]

S. Lang, Algebraic Number Theory,, Second edition, (1994). doi: 10.1007/978-1-4612-0853-2.

[31]

D. N. Lehmer, Asymptotic evaluation of certain totient sums,, Amer. J. Math., 22 (1900), 293. doi: 10.2307/2369728.

[32]

A. Nevo, Exponential volume growth, maximal functions on symmetric spaces, and ergodic theorems for semi-simple Lie groups,, Erg. Theo. Dyn. Syst., 25 (2005), 1257. doi: 10.1017/S0143385704000951.

[33]

H. Oh, Hardy-Littlewood system and representations of integers by an invariant polynomial,, Geom. Funct. Anal., 14 (2004), 791. doi: 10.1007/s00039-004-0475-6.

[34]

H. Oh, Orbital counting via mixing and unipotent flows,, in Homogeneous Flows, (2010), 339.

[35]

E. Peyre, Obstructions au principe de Hasse et à l'approximation faible,, Séminaire Bourbaki, 299 (2005), 165.

[36]

J. Parkkonen and F. Paulin, Équidistribution, comptage et approximation par irrationnels quadratiques,, J. Mod. Dyn., 6 (2012), 1. doi: 10.3934/jmd.2012.6.1.

[37]

J. Parkkonen and F. Paulin, Counting common perpendicular arcs in negative curvature,, preprint, ().

[38]

J. Parkkonen and F. Paulin, On the arithmetic of crossratios and generalised Mertens' formulas,, to appear in Ann. Fac. Scien. Toulouse, (2013).

[39]

V. Platonov and A. Rapinchuck, Algebraic Groups and Number Theory,, Pure and Applied Mathematics, (1994).

[40]

M. Raghunathan, Discrete Subgroups of Lie Groups,, Ergebnisse der Mathematik und ihrer Grenzgebiete, (1972).

[41]

I. Reiner, Maximal Orders,, Academic Press, (1975).

[42]

P. Sarnak, Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series,, Comm. Pure Appl. Math., 34 (1981), 719. doi: 10.1002/cpa.3160340602.

[43]

M. Sato and T. Shintani, On zeta functions associated with prehomogeneous vector spaces,, Ann. of Math. (2), 100 (1974), 131. doi: 10.2307/1970844.

[44]

W. M. Schmidt, Norm form equation,, Ann. of Math. (2), 96 (1972), 526. doi: 10.2307/1970824.

[45]

J.-P. Serre, Cours d'arithmetique,, Collection SUP:, (1970).

[46]

C. L. Siegel, On the theory of indefinite quadratic forms,, Ann. of Math. (2), 45 (1944), 577. doi: 10.2307/1969191.

[47]

C. L. Siegel, The average measure of quadratic forms with given determinant and signature,, Ann. of Math. (2), 45 (1944), 667. doi: 10.2307/1969296.

[48]

T. A. Springer, Linear algebraic groups,, in Algebraic Geometry IV (eds. A. Parshin and I. Shavarevich), (1994), 1. doi: 10.1007/978-3-662-03073-8.

[49]

J. L. Thunder, Decomposable form inequalities,, Ann. of Math. (2), 153 (2001), 767. doi: 10.2307/2661368.

[50]

V. E. Voskresenskiĭ, Algebraic Groups and their Birational Invariants,, Transl. Math. Mono., (1998).

[51]

A. Weil, L'intégration dans les groupes topologiques et ses applications,, Hermann, (1965).

show all references

References:
[1]

T. Apostol, Introduction to Analytic Number Theory,, Undergrad. Texts Math., (1976).

[2]

M. Babillot, Points entiers et groupes discrets: De l'analyse aux systèmes dynamiques,, in Rigidité, (2002), 1.

[3]

B. Bekka, P. de la Harpe and A. Valette, Kazhdan's Property (T),, New Math. Mono., (2008). doi: 10.1017/CBO9780511542749.

[4]

Y. Benoist and H. Oh, Effective equidistribution of $S$-integral points on symmetric varieties,, Ann. Inst. Fourier (Grenoble), 62 (2012), 1889. doi: 10.5802/aif.2738.

[5]

A. Borel, Ensembles fundamentaux pour les groupes arithmétiques,, in Colloque sur la Théorie des Groupes Algébriques (Bruxelles, (1962), 23.

[6]

A. Borel, Introduction aux Groupes Arithmétiques,, Publications de l'Institut de Mathématique de l'Université de Strasbourg, (1341).

[7]

A. Borel, Linear Algebraic Groups,, 2nd edition, (1991). doi: 10.1007/978-1-4612-0941-6.

[8]

A. Borel, Reduction theory for arithmetic groups,, in Algebraic Groups and Discontinuous Subgroups (eds. A. Borel and G. D. Mostow) (Proc. Sympos. Pure Math. Boulder, (1965), 20.

[9]

A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups,, Ann. of Math. (2), 75 (1962), 485. doi: 10.2307/1970210.

[10]

A. Borel and L. Ji, Compactifications of Symmetric and Locally Symmetric Spaces,, Mathematics: Theory & Applications, (2006).

[11]

M. Borovoi and Z. Rudnick, Hardy-Littlewood varieties and semisimple groups,, Invent. Math., 119 (1995), 37. doi: 10.1007/BF01245174.

[12]

L. Clozel, Démonstration de la conjecture $\tau$,, Invent. Math., 151 (2003), 297. doi: 10.1007/s00222-002-0253-8.

[13]

H. Cohn, A Second Course in Number Theory,, Wiley, (1962).

[14]

J.-L. Colliot-Thélène and F. Xu, Brauer-Manin obstruction for integral points of homogeneous spaces and representation by integral quadratic forms,, Compositio Math., 145 (2009), 309. doi: 10.1112/S0010437X0800376X.

[15]

M. Cowling, Sur les coefficients des représentations unitaires des groupes de Lie simples,, in Analyse Harmonique sur les Groupes de Lie (Sém. Nancy-Strasbourg 1976-1978), (1979), 1976.

[16]

W. Duke, Z. Rudnick and P. Sarnak, Density of integer points on affine homogeneous varieties,, Duke Math. J., 71 (1993), 143. doi: 10.1215/S0012-7094-93-07107-4.

[17]

A. Eskin and C. McMullen, Mixing, counting, and equidistribution in Lie groups,, Duke Math. J., 71 (1993), 181. doi: 10.1215/S0012-7094-93-07108-6.

[18]

A. Eskin, S. Mozes and N. Shah, Unipotent flows and counting lattice points on homogeneous varieties,, Ann. of Math. (2), 143 (1996), 253. doi: 10.2307/2118644.

[19]

A. Eskin and H. Oh, Representations of integers by an invariant polynomial and unipotent flows,, Duke Math. J., 135 (2006), 481. doi: 10.1215/S0012-7094-06-13533-0.

[20]

A. Eskin, Z. Rudnick and P. Sarnak, A proof of Siegel's weight formula,, Internat. Math. Res. Notices, 5 (1991), 65. doi: 10.1155/S1073792891000090.

[21]

W. T. Gan and H. Oh, Equidistribution of integer points on a family of homogeneous varieties: A problem of Linnik,, Compositio Math., 136 (2003), 323. doi: 10.1023/A:1023256605535.

[22]

A. Gorodnik and H. Oh, Rational points on homogeneous varieties and equidistribution of adelic periods,, Geom. Funct. Anal., 21 (2011), 319. doi: 10.1007/s00039-011-0113-z.

[23]

K. Györy, On the distribution of solutions of decomposable form equations,, in Number Theory in Progress, (1997), 237.

[24]

M. Hirsch, Differential Topology,, Grad. Texts Math., (1976).

[25]

D. Kelmer and P. Sarnak, Strong spectral gaps for compact quotients of products of $ PSL(2,\RR)$,, J. Euro. Math. Soc., 11 (2009), 283. doi: 10.4171/JEMS/151.

[26]

T. Kimura, Introduction to Prehomogeneous Vector Spaces,, Transl. Math. Mono., (2003).

[27]

D. Kleinbock and G. Margulis, Bounded orbits of nonquasiunipotent flows on homogeneous spaces,, in Sinaĭ's Moscow Seminar on Dynamical Systems, (1996), 141.

[28]

D. Kleinbock and G. Margulis, Logarithm laws for flows on homogeneous spaces,, Invent. Math., 138 (1999), 451. doi: 10.1007/s002220050350.

[29]

H. Koch, Number Theory: Algebraic Numbers and Functions,, Grad. Stud. Math., (2000).

[30]

S. Lang, Algebraic Number Theory,, Second edition, (1994). doi: 10.1007/978-1-4612-0853-2.

[31]

D. N. Lehmer, Asymptotic evaluation of certain totient sums,, Amer. J. Math., 22 (1900), 293. doi: 10.2307/2369728.

[32]

A. Nevo, Exponential volume growth, maximal functions on symmetric spaces, and ergodic theorems for semi-simple Lie groups,, Erg. Theo. Dyn. Syst., 25 (2005), 1257. doi: 10.1017/S0143385704000951.

[33]

H. Oh, Hardy-Littlewood system and representations of integers by an invariant polynomial,, Geom. Funct. Anal., 14 (2004), 791. doi: 10.1007/s00039-004-0475-6.

[34]

H. Oh, Orbital counting via mixing and unipotent flows,, in Homogeneous Flows, (2010), 339.

[35]

E. Peyre, Obstructions au principe de Hasse et à l'approximation faible,, Séminaire Bourbaki, 299 (2005), 165.

[36]

J. Parkkonen and F. Paulin, Équidistribution, comptage et approximation par irrationnels quadratiques,, J. Mod. Dyn., 6 (2012), 1. doi: 10.3934/jmd.2012.6.1.

[37]

J. Parkkonen and F. Paulin, Counting common perpendicular arcs in negative curvature,, preprint, ().

[38]

J. Parkkonen and F. Paulin, On the arithmetic of crossratios and generalised Mertens' formulas,, to appear in Ann. Fac. Scien. Toulouse, (2013).

[39]

V. Platonov and A. Rapinchuck, Algebraic Groups and Number Theory,, Pure and Applied Mathematics, (1994).

[40]

M. Raghunathan, Discrete Subgroups of Lie Groups,, Ergebnisse der Mathematik und ihrer Grenzgebiete, (1972).

[41]

I. Reiner, Maximal Orders,, Academic Press, (1975).

[42]

P. Sarnak, Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series,, Comm. Pure Appl. Math., 34 (1981), 719. doi: 10.1002/cpa.3160340602.

[43]

M. Sato and T. Shintani, On zeta functions associated with prehomogeneous vector spaces,, Ann. of Math. (2), 100 (1974), 131. doi: 10.2307/1970844.

[44]

W. M. Schmidt, Norm form equation,, Ann. of Math. (2), 96 (1972), 526. doi: 10.2307/1970824.

[45]

J.-P. Serre, Cours d'arithmetique,, Collection SUP:, (1970).

[46]

C. L. Siegel, On the theory of indefinite quadratic forms,, Ann. of Math. (2), 45 (1944), 577. doi: 10.2307/1969191.

[47]

C. L. Siegel, The average measure of quadratic forms with given determinant and signature,, Ann. of Math. (2), 45 (1944), 667. doi: 10.2307/1969296.

[48]

T. A. Springer, Linear algebraic groups,, in Algebraic Geometry IV (eds. A. Parshin and I. Shavarevich), (1994), 1. doi: 10.1007/978-3-662-03073-8.

[49]

J. L. Thunder, Decomposable form inequalities,, Ann. of Math. (2), 153 (2001), 767. doi: 10.2307/2661368.

[50]

V. E. Voskresenskiĭ, Algebraic Groups and their Birational Invariants,, Transl. Math. Mono., (1998).

[51]

A. Weil, L'intégration dans les groupes topologiques et ses applications,, Hermann, (1965).

[1]

Jacinto Marabel Romo. A closed-form solution for outperformance options with stochastic correlation and stochastic volatility. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1185-1209. doi: 10.3934/jimo.2015.11.1185

[2]

David Iglesias-Ponte, Juan Carlos Marrero, David Martín de Diego, Edith Padrón. Discrete dynamics in implicit form. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1117-1135. doi: 10.3934/dcds.2013.33.1117

[3]

Anna Amirdjanova, Jie Xiong. Large deviation principle for a stochastic navier-Stokes equation in its vorticity form for a two-dimensional incompressible flow . Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 651-666. doi: 10.3934/dcdsb.2006.6.651

[4]

Abbas Bahri. Recent results in contact form geometry. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1/2) : 21-30. doi: 10.3934/dcds.2004.10.21

[5]

Vivi Rottschäfer. Multi-bump patterns by a normal form approach. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 363-386. doi: 10.3934/dcdsb.2001.1.363

[6]

Gary Lieberman. Nonlocal problems for quasilinear parabolic equations in divergence form. Conference Publications, 2003, 2003 (Special) : 563-570. doi: 10.3934/proc.2003.2003.563

[7]

Todor Mitev, Georgi Popov. Gevrey normal form and effective stability of Lagrangian tori. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 643-666. doi: 10.3934/dcdss.2010.3.643

[8]

Emmanuel Hebey, Jérôme Vétois. Multiple solutions for critical elliptic systems in potential form. Communications on Pure & Applied Analysis, 2008, 7 (3) : 715-741. doi: 10.3934/cpaa.2008.7.715

[9]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[10]

Rong Dong, Dongsheng Li, Lihe Wang. Regularity of elliptic systems in divergence form with directional homogenization. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 75-90. doi: 10.3934/dcds.2018004

[11]

Heide Gluesing-Luerssen. Partitions of Frobenius rings induced by the homogeneous weight. Advances in Mathematics of Communications, 2014, 8 (2) : 191-207. doi: 10.3934/amc.2014.8.191

[12]

Peng Sun. Exponential decay of Lebesgue numbers. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3773-3785. doi: 10.3934/dcds.2012.32.3773

[13]

Jana Majerová. Correlation integral and determinism for a family of $2^\infty$ maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5067-5096. doi: 10.3934/dcds.2016020

[14]

Richard Miles, Thomas Ward. A directional uniformity of periodic point distribution and mixing. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1181-1189. doi: 10.3934/dcds.2011.30.1181

[15]

Ralf Spatzier, Lei Yang. Exponential mixing and smooth classification of commuting expanding maps. Journal of Modern Dynamics, 2017, 11: 263-312. doi: 10.3934/jmd.2017012

[16]

David Maxwell. Kozlov-Maz'ya iteration as a form of Landweber iteration. Inverse Problems & Imaging, 2014, 8 (2) : 537-560. doi: 10.3934/ipi.2014.8.537

[17]

Maria Rosaria Lancia, Valerio Regis Durante, Paola Vernole. Asymptotics for Venttsel' problems for operators in non divergence form in irregular domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1493-1520. doi: 10.3934/dcdss.2016060

[18]

Luciano Viana Felix, Marcelo Firer. Canonical- systematic form for codes in hierarchical poset metrics. Advances in Mathematics of Communications, 2012, 6 (3) : 315-328. doi: 10.3934/amc.2012.6.315

[19]

Dian Palagachev, Lubomira G. Softova. Quasilinear divergence form parabolic equations in Reifenberg flat domains. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1397-1410. doi: 10.3934/dcds.2011.31.1397

[20]

Virginie De Witte, Willy Govaerts. Numerical computation of normal form coefficients of bifurcations of odes in MATLAB. Conference Publications, 2011, 2011 (Special) : 362-372. doi: 10.3934/proc.2011.2011.362

2016 Impact Factor: 0.706

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]