2013, 7(1): 199-216. doi: 10.3934/ipi.2013.7.199

Constrained SART algorithm for inverse problems in image reconstruction

1. 

Ovidius University of Constanta, Blvd. Mamaia 124, 900527 Constanta, Romania, Romania

Received  July 2011 Revised  September 2012 Published  February 2013

In this paper we integrate the SART (Simultaneous Algebraic Reconstruction Technique) algorithm into a general iterative method, introduced in [8]. This general method offers us the possibility of achieving a new convergence proof of the SART method and prove the convergence of the constrained version of SART. Systematic numerical experiments, comparing SART and Kaczmarz-like algorithms, are made on two phantoms widely used in image reconstruction literature.
Citation: Lacramioara Grecu, Constantin Popa. Constrained SART algorithm for inverse problems in image reconstruction. Inverse Problems & Imaging, 2013, 7 (1) : 199-216. doi: 10.3934/ipi.2013.7.199
References:
[1]

A. H. Andersen and A. C. Kak, Simultaneous algebraic reconstruction techniques (SART): A superior implementation of the ART algorithm,, Ultrasonic Imaging, 6 (1984), 81.

[2]

Y. Censor and S. A. Zenios, "Parallel Optimization: Theory, Algorithms, and Applications,", Numer. Math. and Sci. Comp., (1997).

[3]

G. T. Herman, "Image Reconstruction from Projections. The Fundamentals of Computerized Tomography,", Computer Science and Applied Mathematics, (1980).

[4]

M. Jiang and G. Wang, Convergence of the simultaneous algebraic reconstruction technique (SART),, in, (2001), 360.

[5]

M. Jiang and G. Wang, Convergence studies on iterative algorithms for image reconstruction,, IEEE Trans. Medical Imaging, (2003).

[6]

I. Koltracht and P. Lancaster, Constraining strategies for linear iterative processes,, IMA Journal of Numerical Analysis, 10 (1990), 555. doi: 10.1093/imanum/10.4.555.

[7]

I. Koltracht, P. Lancaster and D. Smith, The structure of some matrices arising in tomography,, Linear Algebra and its Applications, 130 (1990), 193. doi: 10.1016/0024-3795(90)90212-U.

[8]

A. Nicola, S. Petra, C. Popa and C. Schnörr, On a general extending and constraining procedure for linear iterative methods,, Intern. Journal of Computer Mathematics, 89(2) (2012), 231.

[9]

X. Pan, E. Y. Sidky and M. Vannier, Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/12/123009.

[10]

C. Popa, "Projection Algorithms, Classical Results and Developments. Applications to Image Reconstructions,", Lambert Academic Publishing - AV Akademikerverlag GmbH & Co.KG, (2012).

[11]

C. Popa, A hybrid Kaczmarz-conjugate gradient algorithm for image reconstruction,, Mathematics and Computers in Simulation, 80 (2010), 2272. doi: 10.1016/j.matcom.2010.04.024.

[12]

C. Popa, Constrained Kaczmarz extended algorithm for image reconstruction,, Linear Algebra and its Applications, 429 (2008), 2247. doi: 10.1016/j.laa.2008.06.024.

show all references

References:
[1]

A. H. Andersen and A. C. Kak, Simultaneous algebraic reconstruction techniques (SART): A superior implementation of the ART algorithm,, Ultrasonic Imaging, 6 (1984), 81.

[2]

Y. Censor and S. A. Zenios, "Parallel Optimization: Theory, Algorithms, and Applications,", Numer. Math. and Sci. Comp., (1997).

[3]

G. T. Herman, "Image Reconstruction from Projections. The Fundamentals of Computerized Tomography,", Computer Science and Applied Mathematics, (1980).

[4]

M. Jiang and G. Wang, Convergence of the simultaneous algebraic reconstruction technique (SART),, in, (2001), 360.

[5]

M. Jiang and G. Wang, Convergence studies on iterative algorithms for image reconstruction,, IEEE Trans. Medical Imaging, (2003).

[6]

I. Koltracht and P. Lancaster, Constraining strategies for linear iterative processes,, IMA Journal of Numerical Analysis, 10 (1990), 555. doi: 10.1093/imanum/10.4.555.

[7]

I. Koltracht, P. Lancaster and D. Smith, The structure of some matrices arising in tomography,, Linear Algebra and its Applications, 130 (1990), 193. doi: 10.1016/0024-3795(90)90212-U.

[8]

A. Nicola, S. Petra, C. Popa and C. Schnörr, On a general extending and constraining procedure for linear iterative methods,, Intern. Journal of Computer Mathematics, 89(2) (2012), 231.

[9]

X. Pan, E. Y. Sidky and M. Vannier, Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/12/123009.

[10]

C. Popa, "Projection Algorithms, Classical Results and Developments. Applications to Image Reconstructions,", Lambert Academic Publishing - AV Akademikerverlag GmbH & Co.KG, (2012).

[11]

C. Popa, A hybrid Kaczmarz-conjugate gradient algorithm for image reconstruction,, Mathematics and Computers in Simulation, 80 (2010), 2272. doi: 10.1016/j.matcom.2010.04.024.

[12]

C. Popa, Constrained Kaczmarz extended algorithm for image reconstruction,, Linear Algebra and its Applications, 429 (2008), 2247. doi: 10.1016/j.laa.2008.06.024.

[1]

Zhou Sheng, Gonglin Yuan, Zengru Cui, Xiabin Duan, Xiaoliang Wang. An adaptive trust region algorithm for large-residual nonsmooth least squares problems. Journal of Industrial & Management Optimization, 2018, 14 (2) : 707-718. doi: 10.3934/jimo.2017070

[2]

Yunmei Chen, Xiaojing Ye, Feng Huang. A novel method and fast algorithm for MR image reconstruction with significantly under-sampled data. Inverse Problems & Imaging, 2010, 4 (2) : 223-240. doi: 10.3934/ipi.2010.4.223

[3]

H. D. Scolnik, N. E. Echebest, M. T. Guardarucci. Extensions of incomplete oblique projections method for solving rank-deficient least-squares problems. Journal of Industrial & Management Optimization, 2009, 5 (2) : 175-191. doi: 10.3934/jimo.2009.5.175

[4]

Jie Huang, Xiaoping Yang, Yunmei Chen. A fast algorithm for global minimization of maximum likelihood based on ultrasound image segmentation. Inverse Problems & Imaging, 2011, 5 (3) : 645-657. doi: 10.3934/ipi.2011.5.645

[5]

Ram U. Verma. On the generalized proximal point algorithm with applications to inclusion problems. Journal of Industrial & Management Optimization, 2009, 5 (2) : 381-390. doi: 10.3934/jimo.2009.5.381

[6]

Ya-Xiang Yuan. Recent advances in numerical methods for nonlinear equations and nonlinear least squares. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 15-34. doi: 10.3934/naco.2011.1.15

[7]

Mila Nikolova. Analytical bounds on the minimizers of (nonconvex) regularized least-squares. Inverse Problems & Imaging, 2008, 2 (1) : 133-149. doi: 10.3934/ipi.2008.2.133

[8]

Nguyen Van Thoai. Decomposition branch and bound algorithm for optimization problems over efficient sets. Journal of Industrial & Management Optimization, 2008, 4 (4) : 647-660. doi: 10.3934/jimo.2008.4.647

[9]

Tran Ngoc Thang, Nguyen Thi Bach Kim. Outcome space algorithm for generalized multiplicative problems and optimization over the efficient set. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1417-1433. doi: 10.3934/jimo.2016.12.1417

[10]

Barbara Kaltenbacher, Jonas Offtermatt. A refinement and coarsening indicator algorithm for finding sparse solutions of inverse problems. Inverse Problems & Imaging, 2011, 5 (2) : 391-406. doi: 10.3934/ipi.2011.5.391

[11]

Sanming Liu, Zhijie Wang, Chongyang Liu. Proximal iterative Gaussian smoothing algorithm for a class of nonsmooth convex minimization problems. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 79-89. doi: 10.3934/naco.2015.5.79

[12]

Artyom Nahapetyan, Panos M. Pardalos. A bilinear relaxation based algorithm for concave piecewise linear network flow problems. Journal of Industrial & Management Optimization, 2007, 3 (1) : 71-85. doi: 10.3934/jimo.2007.3.71

[13]

Yazheng Dang, Fanwen Meng, Jie Sun. Convergence analysis of a parallel projection algorithm for solving convex feasibility problems. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 505-519. doi: 10.3934/naco.2016023

[14]

Tan Bui-Thanh, Omar Ghattas. A scalable algorithm for MAP estimators in Bayesian inverse problems with Besov priors. Inverse Problems & Imaging, 2015, 9 (1) : 27-53. doi: 10.3934/ipi.2015.9.27

[15]

Zheng-Ru Zhang, Tao Tang. An adaptive mesh redistribution algorithm for convection-dominated problems. Communications on Pure & Applied Analysis, 2002, 1 (3) : 341-357. doi: 10.3934/cpaa.2002.1.341

[16]

Paul B. Hermanns, Nguyen Van Thoai. Global optimization algorithm for solving bilevel programming problems with quadratic lower levels. Journal of Industrial & Management Optimization, 2010, 6 (1) : 177-196. doi: 10.3934/jimo.2010.6.177

[17]

Xiaoling Sun, Hongbo Sheng, Duan Li. An exact algorithm for 0-1 polynomial knapsack problems. Journal of Industrial & Management Optimization, 2007, 3 (2) : 223-232. doi: 10.3934/jimo.2007.3.223

[18]

Sie Long Kek, Mohd Ismail Abd Aziz, Kok Lay Teo. A gradient algorithm for optimal control problems with model-reality differences. Numerical Algebra, Control & Optimization, 2015, 5 (3) : 251-266. doi: 10.3934/naco.2015.5.251

[19]

Kazufumi Ito, Karim Ramdani, Marius Tucsnak. A time reversal based algorithm for solving initial data inverse problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 641-652. doi: 10.3934/dcdss.2011.4.641

[20]

Rong Hu, Ya-Ping Fang. A parametric simplex algorithm for biobjective piecewise linear programming problems. Journal of Industrial & Management Optimization, 2017, 13 (2) : 573-586. doi: 10.3934/jimo.2016032

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]