2013, 7(1): 199-216. doi: 10.3934/ipi.2013.7.199

Constrained SART algorithm for inverse problems in image reconstruction

1. 

Ovidius University of Constanta, Blvd. Mamaia 124, 900527 Constanta, Romania, Romania

Received  July 2011 Revised  September 2012 Published  February 2013

In this paper we integrate the SART (Simultaneous Algebraic Reconstruction Technique) algorithm into a general iterative method, introduced in [8]. This general method offers us the possibility of achieving a new convergence proof of the SART method and prove the convergence of the constrained version of SART. Systematic numerical experiments, comparing SART and Kaczmarz-like algorithms, are made on two phantoms widely used in image reconstruction literature.
Citation: Lacramioara Grecu, Constantin Popa. Constrained SART algorithm for inverse problems in image reconstruction. Inverse Problems & Imaging, 2013, 7 (1) : 199-216. doi: 10.3934/ipi.2013.7.199
References:
[1]

A. H. Andersen and A. C. Kak, Simultaneous algebraic reconstruction techniques (SART): A superior implementation of the ART algorithm,, Ultrasonic Imaging, 6 (1984), 81.

[2]

Y. Censor and S. A. Zenios, "Parallel Optimization: Theory, Algorithms, and Applications,", Numer. Math. and Sci. Comp., (1997).

[3]

G. T. Herman, "Image Reconstruction from Projections. The Fundamentals of Computerized Tomography,", Computer Science and Applied Mathematics, (1980).

[4]

M. Jiang and G. Wang, Convergence of the simultaneous algebraic reconstruction technique (SART),, in, (2001), 360.

[5]

M. Jiang and G. Wang, Convergence studies on iterative algorithms for image reconstruction,, IEEE Trans. Medical Imaging, (2003).

[6]

I. Koltracht and P. Lancaster, Constraining strategies for linear iterative processes,, IMA Journal of Numerical Analysis, 10 (1990), 555. doi: 10.1093/imanum/10.4.555.

[7]

I. Koltracht, P. Lancaster and D. Smith, The structure of some matrices arising in tomography,, Linear Algebra and its Applications, 130 (1990), 193. doi: 10.1016/0024-3795(90)90212-U.

[8]

A. Nicola, S. Petra, C. Popa and C. Schnörr, On a general extending and constraining procedure for linear iterative methods,, Intern. Journal of Computer Mathematics, 89(2) (2012), 231.

[9]

X. Pan, E. Y. Sidky and M. Vannier, Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/12/123009.

[10]

C. Popa, "Projection Algorithms, Classical Results and Developments. Applications to Image Reconstructions,", Lambert Academic Publishing - AV Akademikerverlag GmbH & Co.KG, (2012).

[11]

C. Popa, A hybrid Kaczmarz-conjugate gradient algorithm for image reconstruction,, Mathematics and Computers in Simulation, 80 (2010), 2272. doi: 10.1016/j.matcom.2010.04.024.

[12]

C. Popa, Constrained Kaczmarz extended algorithm for image reconstruction,, Linear Algebra and its Applications, 429 (2008), 2247. doi: 10.1016/j.laa.2008.06.024.

show all references

References:
[1]

A. H. Andersen and A. C. Kak, Simultaneous algebraic reconstruction techniques (SART): A superior implementation of the ART algorithm,, Ultrasonic Imaging, 6 (1984), 81.

[2]

Y. Censor and S. A. Zenios, "Parallel Optimization: Theory, Algorithms, and Applications,", Numer. Math. and Sci. Comp., (1997).

[3]

G. T. Herman, "Image Reconstruction from Projections. The Fundamentals of Computerized Tomography,", Computer Science and Applied Mathematics, (1980).

[4]

M. Jiang and G. Wang, Convergence of the simultaneous algebraic reconstruction technique (SART),, in, (2001), 360.

[5]

M. Jiang and G. Wang, Convergence studies on iterative algorithms for image reconstruction,, IEEE Trans. Medical Imaging, (2003).

[6]

I. Koltracht and P. Lancaster, Constraining strategies for linear iterative processes,, IMA Journal of Numerical Analysis, 10 (1990), 555. doi: 10.1093/imanum/10.4.555.

[7]

I. Koltracht, P. Lancaster and D. Smith, The structure of some matrices arising in tomography,, Linear Algebra and its Applications, 130 (1990), 193. doi: 10.1016/0024-3795(90)90212-U.

[8]

A. Nicola, S. Petra, C. Popa and C. Schnörr, On a general extending and constraining procedure for linear iterative methods,, Intern. Journal of Computer Mathematics, 89(2) (2012), 231.

[9]

X. Pan, E. Y. Sidky and M. Vannier, Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/12/123009.

[10]

C. Popa, "Projection Algorithms, Classical Results and Developments. Applications to Image Reconstructions,", Lambert Academic Publishing - AV Akademikerverlag GmbH & Co.KG, (2012).

[11]

C. Popa, A hybrid Kaczmarz-conjugate gradient algorithm for image reconstruction,, Mathematics and Computers in Simulation, 80 (2010), 2272. doi: 10.1016/j.matcom.2010.04.024.

[12]

C. Popa, Constrained Kaczmarz extended algorithm for image reconstruction,, Linear Algebra and its Applications, 429 (2008), 2247. doi: 10.1016/j.laa.2008.06.024.

[1]

Zhou Sheng, Gonglin Yuan, Zengru Cui, Xiabin Duan, Xiaoliang Wang. An adaptive trust region algorithm for large-residual nonsmooth least squares problems. Journal of Industrial & Management Optimization, 2018, 14 (2) : 707-718. doi: 10.3934/jimo.2017070

[2]

Yunmei Chen, Xiaojing Ye, Feng Huang. A novel method and fast algorithm for MR image reconstruction with significantly under-sampled data. Inverse Problems & Imaging, 2010, 4 (2) : 223-240. doi: 10.3934/ipi.2010.4.223

[3]

Hassan Mohammad, Mohammed Yusuf Waziri, Sandra Augusta Santos. A brief survey of methods for solving nonlinear least-squares problems. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 1-13. doi: 10.3934/naco.2019001

[4]

Wenzhong Zhu, Huanlong Jiang, Erli Wang, Yani Hou, Lidong Xian, Joyati Debnath. X-ray image global enhancement algorithm in medical image classification. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1297-1309. doi: 10.3934/dcdss.2019089

[5]

H. D. Scolnik, N. E. Echebest, M. T. Guardarucci. Extensions of incomplete oblique projections method for solving rank-deficient least-squares problems. Journal of Industrial & Management Optimization, 2009, 5 (2) : 175-191. doi: 10.3934/jimo.2009.5.175

[6]

Jie Huang, Xiaoping Yang, Yunmei Chen. A fast algorithm for global minimization of maximum likelihood based on ultrasound image segmentation. Inverse Problems & Imaging, 2011, 5 (3) : 645-657. doi: 10.3934/ipi.2011.5.645

[7]

Xiaohong Zhu, Lihe Zhou, Zili Yang, Joyati Debnath. A new text information extraction algorithm of video image under multimedia environment. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1265-1279. doi: 10.3934/dcdss.2019087

[8]

Jiangchuan Fan, Xinyu Guo, Jianjun Du, Weiliang Wen, Xianju Lu, Brahmani Louiza. Analysis of the clustering fusion algorithm for multi-band color image. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1233-1249. doi: 10.3934/dcdss.2019085

[9]

Yi Zhang, Xiao-Li Ma. Research on image digital watermarking optimization algorithm under virtual reality technology. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1427-1440. doi: 10.3934/dcdss.2019098

[10]

Xiaohong Zhu, Zili Yang, Tabharit Zoubir. Research on the matching algorithm for heterologous image after deformation in the same scene. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1281-1296. doi: 10.3934/dcdss.2019088

[11]

Xin Li, Ziguan Cui, Linhui Sun, Guanming Lu, Debnath Narayan. Research on iterative repair algorithm of Hyperchaotic image based on support vector machine. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1199-1218. doi: 10.3934/dcdss.2019083

[12]

Ram U. Verma. On the generalized proximal point algorithm with applications to inclusion problems. Journal of Industrial & Management Optimization, 2009, 5 (2) : 381-390. doi: 10.3934/jimo.2009.5.381

[13]

Ya-Xiang Yuan. Recent advances in numerical methods for nonlinear equations and nonlinear least squares. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 15-34. doi: 10.3934/naco.2011.1.15

[14]

Mila Nikolova. Analytical bounds on the minimizers of (nonconvex) regularized least-squares. Inverse Problems & Imaging, 2008, 2 (1) : 133-149. doi: 10.3934/ipi.2008.2.133

[15]

Nguyen Van Thoai. Decomposition branch and bound algorithm for optimization problems over efficient sets. Journal of Industrial & Management Optimization, 2008, 4 (4) : 647-660. doi: 10.3934/jimo.2008.4.647

[16]

Tran Ngoc Thang, Nguyen Thi Bach Kim. Outcome space algorithm for generalized multiplicative problems and optimization over the efficient set. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1417-1433. doi: 10.3934/jimo.2016.12.1417

[17]

Barbara Kaltenbacher, Jonas Offtermatt. A refinement and coarsening indicator algorithm for finding sparse solutions of inverse problems. Inverse Problems & Imaging, 2011, 5 (2) : 391-406. doi: 10.3934/ipi.2011.5.391

[18]

Sanming Liu, Zhijie Wang, Chongyang Liu. Proximal iterative Gaussian smoothing algorithm for a class of nonsmooth convex minimization problems. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 79-89. doi: 10.3934/naco.2015.5.79

[19]

Artyom Nahapetyan, Panos M. Pardalos. A bilinear relaxation based algorithm for concave piecewise linear network flow problems. Journal of Industrial & Management Optimization, 2007, 3 (1) : 71-85. doi: 10.3934/jimo.2007.3.71

[20]

Yazheng Dang, Fanwen Meng, Jie Sun. Convergence analysis of a parallel projection algorithm for solving convex feasibility problems. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 505-519. doi: 10.3934/naco.2016023

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]