2011, 1(4): 781-816. doi: 10.3934/naco.2011.1.781

A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms

1. 

Networks and Performance Engineering Research Group, Informatics Research Institute, University of Bradford, Bradford, BD7 1DP, United Kingdom, United Kingdom, United Kingdom

Received  June 2011 Revised  September 2011 Published  November 2011

A generic maximum entropy (ME) product-form approximation is proposed for arbitrary single class open first-come-first-served (FCFS) queueing network models with blocking (QNMs-B), subject to bursty GE-type interarrival and service times and the mixed blocking mechanisms (BMs) of Blocking-After-Service (BAS), Blocking-Before-Service (BBS) and Repetitive-Service (RS) Blocking with Random (RS-RD) and Fixed (RS-FD) destinations. A new GE-type analytic framework is devised, based on the ME analysis of a virtual multiple class GE/GE/1/N+U queueing system with finite capacity, $N (N>1)$ augmented by $U (U\geq1)$ auxiliary-waiting lines, to determine the first two moments of BAS- and BBS-dependent effective service times towards a node-by-node decomposition of the entire network. In this context, a unified ME algorithm is devised for the approximate analysis of arbitrary open FCFS QNMs-B with a mixture of the BMs of BAS, BBS, RS-RD and RS-FD. Typical numerical tests are carried out to assess the credibility of the unified ME algorithm against discrete event simulation and also establish GE-type experimental performance bounds. A critique on the feasibility of ME formalism for QNMs-B and suggested extensions are included.
Citation: Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781
References:
[1]

I. F Akyildiz and C. C Huang, Exact analysis of multi-job class networks of queues with blocking-after-sevice,, in ''Proc. of the 2nd Inter. WS on Queueing Networks with Finite Capacity, (1992), 258.

[2]

J. S. Alanazi and D. D. Kouvatsos, On the experimentation with the unified ME algorithm for arbitrary open QNMs-B,, Technical Report TR7-NetPEn-April 11, (2011).

[3]

J. S. Alanazi and D. D. Kouvatsos, A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms,, in ''Proc. of the IEEE/IPSJ Workshop WS-8: Future Internet Engineering of the SAINT 2011 International Symposium on Applications and the Internet, (2011), 292. doi: 10.1109/SAINT.2011.91.

[4]

T. Altiok and H. G. Perros, Approximate analysis of arbitrary configurations of queueing networks with blocking,, Ann. Oper. Res., 9 (1987), 481. doi: 10.1007/BF02054751.

[5]

S. A. Assi, D. D. Kouvatsos, I. M. Mkwawa and K. Smith, A unified ME decomposition algorithm of open queueing network modes with blocking,, in ''Tech. Proc. of HET-NETs 08 International Working Conference on Performance Modelling and Evaluation of Heterogeneous Networks, (2008).

[6]

S. Balsamo, V. D. Nitto Persone and R. Onvural, "Analysis of Queueing Networks with Blocking,", Kluwer Academic publishers, (2001).

[7]

S. Balsamo, Queueing networks with blocking: snalysis, solution algorithms and properties,, in ''Network Performance Engineering, 5233 (2011), 233. doi: 10.1007/978-3-642-02742-0.

[8]

F. Baskett, K. M. Chandy, R. R. Muntz and F. G. Palacios, Open, closed and mixed networks of queues with different classes of customers,, J. ACM, 22 (1975), 248. doi: 10.1145/321879.321887.

[9]

V. E. Benes, "Mathematical Theory of Connecting Networks and Telephone Traffic,", Academic Press, (1965).

[10]

J. Beran, "Statistics for Long-Memory Processes,", Chapman and Hall, (1994).

[11]

R. M. Bryant, A. E. Krzesinski, M. S. Lakshmi and K. M. Chandy, The MVA priority approximation,, T.O.C.S., 2 (1984), 335.

[12]

C. G. Chakrabarti and D. E. Kajal, Boltzmann-Gibbs entropy: axiomatic characterisation and application,, Internat. J. Math. Math. Sci., 23 (2000), 243. doi: 10.1155/S0161171200000375.

[13]

K. M. Chandy, U. Herzog and L. Woo, Approximate analysis of general queuing networks,, IBM J. of Res. Dev., 19 (1975), 43. doi: 10.1147/rd.191.0043.

[14]

Y. L. Chen and C. Chen, Performance analysis of non-preemptive HOL GE/G/1 queue with two priority classes of SIP-T signaling system in carrier grade VoIP network,, J. Chin. Inst. Eng., 33 (2010), 191. doi: 10.1080/02533839.2010.9671610.

[15]

P. J. Courtois, U. Herzog and L. Woo, "Decomposability: Queueing and Computer System Applications,", Academic Press, (1977).

[16]

M. A El-Affendi and D. D Kouvatsos, A maximum entropy analysis of the M/G/1 and G/M/1 queueing systems at equilibrium,, Acta info., 19 (1983), 339.

[17]

A. Ferdinand, A statistical mechanical approach to systems analysis,, IBM J. Res. Dev., 14 (1970), 539. doi: 10.1147/rd.145.0539.

[18]

C. H. Foh, B. Meini, B. Wydrowski and M. Zuerman, Modelling and performance evaluation of GPRS,, in ''Proc. Of IEEE VTC, (2001), 2108.

[19]

E. Gelenbe and G. Pujolle, The behaviour of a single queue in a general queueing network,, Acta info., 7 (1974), 123.

[20]

E. Gelenbe and I. Mitrani, "Analysis and Synthesis of Computer Systems,", Academic Press, (1980).

[21]

J. H. Havrda and F. Charvat, Quantification methods of classificatory processes: concept of structural entropy,, Kybernatica, 3 (1967), 30.

[22]

H. E. Hurst, Long-term storage capacity of reservoirs,, Transactions of the American Society of Civil Engineers, 116 (1951), 770.

[23]

E. T. Jaynes, Information theory and statistical mechanics,, Phys. Rev., 106 (1957), 620. doi: 10.1103/PhysRev.106.620.

[24]

E. T. Jaynes, Information theory and statistical mechanics II,, Phys. Rev., 108 (1957), 171. doi: 10.1103/PhysRev.108.171.

[25]

R. Johnson, Properties of cross-entropy minimization,, IEEE Trans. Info. Theory, 27 (1981), 472. doi: 10.1109/TIT.1981.1056373.

[26]

J. N. Kapur, "Maximum-entropy Models in Science and Engineering,", John Wiley, (1989).

[27]

J. N. Kapur and H. K. Kesavan, "Entropy Optimization Principles with Applications,", Academic Press, (1992).

[28]

F. P. Kelly, "Reversibility and Stochastic Networks,", Wiley, (1979).

[29]

D. D. Kouvatsos, Maximum entropy methods for general queueing networks,, in ''Modelling Techniques and Tools for Performance Analysis, (1985), 589.

[30]

D. D. Kouvatsos, Maximum entropy and the G/G/1/N queue,, Acta info., 23 (1986), 545.

[31]

D. D. Kouvatsos, A universal maximum entropy algorithm for the analysis of general closed networks,, in ''Computer Networks and Performance Evaluation, (1986), 113.

[32]

D. D. Kouvatsos, A maximum entropy analysis of the G/G/1 queue at equilibrium,, J. Opl. Res. Soc., 39 (1988), 183.

[33]

D. D. Kouvatsos and N. P. Xenios, MEM for arbitrary queueing networks with multiple general servers and repetitive service blocking,, Performance Evaluation, 10 (1989), 169. doi: 10.1016/0166-5316(89)90009-6.

[34]

D. D. Kouvatsos, P. H. Georgatsos and N. Tabet-Aouel, A universal maximum entropy algorithm for general multiple class open networks with mixed service disciplines,, in ''Modelling Techniques and Tools for Computer Performance Evaluation, (1989), 397. doi: 10.1007/978-1-4613-0533-0_26.

[35]

D. D. Kouvatsos and N. M. Tabet-Aouel, A maximum entropy priority approximation for a stable G/G/1 queue,, Acta info., 27 (1989), 247.

[36]

D. D. Kouvatsos and N. M. Tabet-Aouel, Product-form approximations for an extended class of general closed queueing networks,, in ''Performance '90', (1990), 301.

[37]

D. D. Kouvatsos and S. G. Denazis, Entropy maximised queueing networks with blocking and multiple job classes,, Performance Evaluation, 17 (1993), 189. doi: 10.1016/0166-5316(93)90041-R.

[38]

D. D. Kouvatsos, Entropy maximisation and queueing network models,, Annals of Oper. Res., 48 (1994), 63. doi: 10.1007/BF02023095.

[39]

D. D. Kouvatsos and I. U. Awan, MEM for arbitrary closed queueing networks with RS-blocking and multiple job classes,, Annals of Oper. Res., 79 (1998), 231. doi: 10.1023/A:1018922705462.

[40]

D. D. Kouvatsos and I. U. Awan, Entropy maximisation and open queueing networks with priorities and blocking,, Performance Evaluation, 51 (2003), 191. doi: 10.1016/S0166-5316(02)00092-5.

[41]

D. D. Kouvatsos, I. U. Awan, R. J. Fretwell and R. Dimakopoulos, G. A cost-effective approximation for SRD traffic in arbitrary multi-buffered networks,, Computer Networks, 34 (2000), 97. doi: 10.1016/S1389-1286(00)00099-2.

[42]

D. D. Kouvatsos, Y. Li and W. Xi, Performance modelling and analysis of a 4G handoff priority scheme for cellular networks,, in ''Performance Modelling and Analysis of Heterogeneous Networks, (2009), 215.

[43]

D. D. Kouvatsos and S. A. Assi, Generalised entropy maximisation and queues with bursty and/or heavy tails,, in ''Network Performance Engineering, 5233 (2011), 357. doi: 10.1007/978-3-642-02742-0.

[44]

D. D. Kouvatsos and S. A. Assi, On the analysis of queues with heavy tails: a non-extensive maximum entropy formalism and a generalisation of the Zipf-mandelbrot distribution,, in ''Special IFIP LNCS issue in Honour of Guenter Haring, (2011).

[45]

R. A. Marie, An approximate analytical method for general queueing networks,, IEEE Trans. Software Eng., 5 (1979), 530. doi: 10.1109/TSE.1979.234214.

[46]

B. B. Mandelbrot, "The Fractal Geometry of Nature,", W. H. Freeman, (1982).

[47]

R. O. Onvural and I. F. Akyildiz, "Queueing Networks with Finite Capacity,", Elsevier Science publishers, (1993).

[48]

R. O. Onvural, Survey of closed queueing networks with blocking,, ACM Comput. Surv., 22 (1990), 83. doi: 10.1145/78919.78920.

[49]

H. G. Perros and T. Altiok, "Queueing Networks with Blocking,", Elsevier Science publishers, (1989).

[50]

H. G. Perros, Approximate algorithms for open queueing networks with blocking,, in ''Stochastic Analysis of Computer and Communication Systems, (1990), 451.

[51]

H. G. Perros, "Queueing Networks with Blocking,", Oxford University Press, (1994).

[52]

E. Pinsky and Y. Yemini, A statistical mechanics of some interconnection networks,, in ''Performance '48', (1984), 147.

[53]

E. Pinsky and Y. Yemini, The canonical approximation in performance analysis,, in ''Computer Networking and Performance Evaluation, (1986), 125.

[54]

M. Reiser and H. Kobayashi, Accuracy of the diffusion approximation for some queuing systems,, IBM J. Res. Dev., 18 (1974), 110. doi: 10.1147/rd.182.0110.

[55]

K. C. Sevcik, A. I. Levy, S. Tripathi and J. L. Zahorjan, Improving approximations of aggregated queuing network subsystems,, in ''Computer Performance, (1977), 1.

[56]

C. E. Shannon and W. Weaver, A mathematical theory of communication,, Bell Syst. Tech. J., 27 (1948), 379.

[57]

J. Shore and R. Johnson, Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy,, IEEE Trans. Info. Theory, 26 (1980), 26. doi: 10.1109/TIT.1980.1056144.

[58]

J. E. Shore, Information theoretic approximations for M/G/1 and G/G/1 queuing systems,, Acta info., 17 (1982), 43.

[59]

K. Smith and D. D. Kouvatsos, "Entropy Maximisation and QNM with Blocking after Service,", Research report RS-08-01, (2001), 08.

[60]

K. Smith and D.D. Kouvatsos, Entropy maximisation and QNM with blocking before service,, in ''Proc. of the 2nd Annual Postgraduate Symposium on Convergence of Telecommunications, (2001), 78.

[61]

Y. Takahashi and H. Miyahara, An approximation method for open restricted queueing networks,, Oper. Res., 28 (1980), 594. doi: 10.1287/opre.28.3.594.

[62]

C. Tsallis, Possible generalisation of boltzmann-gibbs statistics,, Journal of Statistical Physics, 52 (1988), 479. doi: 10.1007/BF01016429.

[63]

M. Tribus, "Rational Descriptions, Decisions and Designs,", Pergamon, (1969).

[64]

B. R. Walstra, "Iterative Analysis of Networks of Queues,", Ph.D thesis, (1984).

[65]

D. Yao and J. A Buzacott, Modelling a class of state dependent routing in flexible manufacturing systems,, Annals of Oper. Res., 3 (1985), 153. doi: 10.1007/BF02024744.

[66]

, "Tsallis Statistics, Statistical Mechanics for Non-extensive Systems and Long-Range Interactions,", Notebook, (2007).

show all references

References:
[1]

I. F Akyildiz and C. C Huang, Exact analysis of multi-job class networks of queues with blocking-after-sevice,, in ''Proc. of the 2nd Inter. WS on Queueing Networks with Finite Capacity, (1992), 258.

[2]

J. S. Alanazi and D. D. Kouvatsos, On the experimentation with the unified ME algorithm for arbitrary open QNMs-B,, Technical Report TR7-NetPEn-April 11, (2011).

[3]

J. S. Alanazi and D. D. Kouvatsos, A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms,, in ''Proc. of the IEEE/IPSJ Workshop WS-8: Future Internet Engineering of the SAINT 2011 International Symposium on Applications and the Internet, (2011), 292. doi: 10.1109/SAINT.2011.91.

[4]

T. Altiok and H. G. Perros, Approximate analysis of arbitrary configurations of queueing networks with blocking,, Ann. Oper. Res., 9 (1987), 481. doi: 10.1007/BF02054751.

[5]

S. A. Assi, D. D. Kouvatsos, I. M. Mkwawa and K. Smith, A unified ME decomposition algorithm of open queueing network modes with blocking,, in ''Tech. Proc. of HET-NETs 08 International Working Conference on Performance Modelling and Evaluation of Heterogeneous Networks, (2008).

[6]

S. Balsamo, V. D. Nitto Persone and R. Onvural, "Analysis of Queueing Networks with Blocking,", Kluwer Academic publishers, (2001).

[7]

S. Balsamo, Queueing networks with blocking: snalysis, solution algorithms and properties,, in ''Network Performance Engineering, 5233 (2011), 233. doi: 10.1007/978-3-642-02742-0.

[8]

F. Baskett, K. M. Chandy, R. R. Muntz and F. G. Palacios, Open, closed and mixed networks of queues with different classes of customers,, J. ACM, 22 (1975), 248. doi: 10.1145/321879.321887.

[9]

V. E. Benes, "Mathematical Theory of Connecting Networks and Telephone Traffic,", Academic Press, (1965).

[10]

J. Beran, "Statistics for Long-Memory Processes,", Chapman and Hall, (1994).

[11]

R. M. Bryant, A. E. Krzesinski, M. S. Lakshmi and K. M. Chandy, The MVA priority approximation,, T.O.C.S., 2 (1984), 335.

[12]

C. G. Chakrabarti and D. E. Kajal, Boltzmann-Gibbs entropy: axiomatic characterisation and application,, Internat. J. Math. Math. Sci., 23 (2000), 243. doi: 10.1155/S0161171200000375.

[13]

K. M. Chandy, U. Herzog and L. Woo, Approximate analysis of general queuing networks,, IBM J. of Res. Dev., 19 (1975), 43. doi: 10.1147/rd.191.0043.

[14]

Y. L. Chen and C. Chen, Performance analysis of non-preemptive HOL GE/G/1 queue with two priority classes of SIP-T signaling system in carrier grade VoIP network,, J. Chin. Inst. Eng., 33 (2010), 191. doi: 10.1080/02533839.2010.9671610.

[15]

P. J. Courtois, U. Herzog and L. Woo, "Decomposability: Queueing and Computer System Applications,", Academic Press, (1977).

[16]

M. A El-Affendi and D. D Kouvatsos, A maximum entropy analysis of the M/G/1 and G/M/1 queueing systems at equilibrium,, Acta info., 19 (1983), 339.

[17]

A. Ferdinand, A statistical mechanical approach to systems analysis,, IBM J. Res. Dev., 14 (1970), 539. doi: 10.1147/rd.145.0539.

[18]

C. H. Foh, B. Meini, B. Wydrowski and M. Zuerman, Modelling and performance evaluation of GPRS,, in ''Proc. Of IEEE VTC, (2001), 2108.

[19]

E. Gelenbe and G. Pujolle, The behaviour of a single queue in a general queueing network,, Acta info., 7 (1974), 123.

[20]

E. Gelenbe and I. Mitrani, "Analysis and Synthesis of Computer Systems,", Academic Press, (1980).

[21]

J. H. Havrda and F. Charvat, Quantification methods of classificatory processes: concept of structural entropy,, Kybernatica, 3 (1967), 30.

[22]

H. E. Hurst, Long-term storage capacity of reservoirs,, Transactions of the American Society of Civil Engineers, 116 (1951), 770.

[23]

E. T. Jaynes, Information theory and statistical mechanics,, Phys. Rev., 106 (1957), 620. doi: 10.1103/PhysRev.106.620.

[24]

E. T. Jaynes, Information theory and statistical mechanics II,, Phys. Rev., 108 (1957), 171. doi: 10.1103/PhysRev.108.171.

[25]

R. Johnson, Properties of cross-entropy minimization,, IEEE Trans. Info. Theory, 27 (1981), 472. doi: 10.1109/TIT.1981.1056373.

[26]

J. N. Kapur, "Maximum-entropy Models in Science and Engineering,", John Wiley, (1989).

[27]

J. N. Kapur and H. K. Kesavan, "Entropy Optimization Principles with Applications,", Academic Press, (1992).

[28]

F. P. Kelly, "Reversibility and Stochastic Networks,", Wiley, (1979).

[29]

D. D. Kouvatsos, Maximum entropy methods for general queueing networks,, in ''Modelling Techniques and Tools for Performance Analysis, (1985), 589.

[30]

D. D. Kouvatsos, Maximum entropy and the G/G/1/N queue,, Acta info., 23 (1986), 545.

[31]

D. D. Kouvatsos, A universal maximum entropy algorithm for the analysis of general closed networks,, in ''Computer Networks and Performance Evaluation, (1986), 113.

[32]

D. D. Kouvatsos, A maximum entropy analysis of the G/G/1 queue at equilibrium,, J. Opl. Res. Soc., 39 (1988), 183.

[33]

D. D. Kouvatsos and N. P. Xenios, MEM for arbitrary queueing networks with multiple general servers and repetitive service blocking,, Performance Evaluation, 10 (1989), 169. doi: 10.1016/0166-5316(89)90009-6.

[34]

D. D. Kouvatsos, P. H. Georgatsos and N. Tabet-Aouel, A universal maximum entropy algorithm for general multiple class open networks with mixed service disciplines,, in ''Modelling Techniques and Tools for Computer Performance Evaluation, (1989), 397. doi: 10.1007/978-1-4613-0533-0_26.

[35]

D. D. Kouvatsos and N. M. Tabet-Aouel, A maximum entropy priority approximation for a stable G/G/1 queue,, Acta info., 27 (1989), 247.

[36]

D. D. Kouvatsos and N. M. Tabet-Aouel, Product-form approximations for an extended class of general closed queueing networks,, in ''Performance '90', (1990), 301.

[37]

D. D. Kouvatsos and S. G. Denazis, Entropy maximised queueing networks with blocking and multiple job classes,, Performance Evaluation, 17 (1993), 189. doi: 10.1016/0166-5316(93)90041-R.

[38]

D. D. Kouvatsos, Entropy maximisation and queueing network models,, Annals of Oper. Res., 48 (1994), 63. doi: 10.1007/BF02023095.

[39]

D. D. Kouvatsos and I. U. Awan, MEM for arbitrary closed queueing networks with RS-blocking and multiple job classes,, Annals of Oper. Res., 79 (1998), 231. doi: 10.1023/A:1018922705462.

[40]

D. D. Kouvatsos and I. U. Awan, Entropy maximisation and open queueing networks with priorities and blocking,, Performance Evaluation, 51 (2003), 191. doi: 10.1016/S0166-5316(02)00092-5.

[41]

D. D. Kouvatsos, I. U. Awan, R. J. Fretwell and R. Dimakopoulos, G. A cost-effective approximation for SRD traffic in arbitrary multi-buffered networks,, Computer Networks, 34 (2000), 97. doi: 10.1016/S1389-1286(00)00099-2.

[42]

D. D. Kouvatsos, Y. Li and W. Xi, Performance modelling and analysis of a 4G handoff priority scheme for cellular networks,, in ''Performance Modelling and Analysis of Heterogeneous Networks, (2009), 215.

[43]

D. D. Kouvatsos and S. A. Assi, Generalised entropy maximisation and queues with bursty and/or heavy tails,, in ''Network Performance Engineering, 5233 (2011), 357. doi: 10.1007/978-3-642-02742-0.

[44]

D. D. Kouvatsos and S. A. Assi, On the analysis of queues with heavy tails: a non-extensive maximum entropy formalism and a generalisation of the Zipf-mandelbrot distribution,, in ''Special IFIP LNCS issue in Honour of Guenter Haring, (2011).

[45]

R. A. Marie, An approximate analytical method for general queueing networks,, IEEE Trans. Software Eng., 5 (1979), 530. doi: 10.1109/TSE.1979.234214.

[46]

B. B. Mandelbrot, "The Fractal Geometry of Nature,", W. H. Freeman, (1982).

[47]

R. O. Onvural and I. F. Akyildiz, "Queueing Networks with Finite Capacity,", Elsevier Science publishers, (1993).

[48]

R. O. Onvural, Survey of closed queueing networks with blocking,, ACM Comput. Surv., 22 (1990), 83. doi: 10.1145/78919.78920.

[49]

H. G. Perros and T. Altiok, "Queueing Networks with Blocking,", Elsevier Science publishers, (1989).

[50]

H. G. Perros, Approximate algorithms for open queueing networks with blocking,, in ''Stochastic Analysis of Computer and Communication Systems, (1990), 451.

[51]

H. G. Perros, "Queueing Networks with Blocking,", Oxford University Press, (1994).

[52]

E. Pinsky and Y. Yemini, A statistical mechanics of some interconnection networks,, in ''Performance '48', (1984), 147.

[53]

E. Pinsky and Y. Yemini, The canonical approximation in performance analysis,, in ''Computer Networking and Performance Evaluation, (1986), 125.

[54]

M. Reiser and H. Kobayashi, Accuracy of the diffusion approximation for some queuing systems,, IBM J. Res. Dev., 18 (1974), 110. doi: 10.1147/rd.182.0110.

[55]

K. C. Sevcik, A. I. Levy, S. Tripathi and J. L. Zahorjan, Improving approximations of aggregated queuing network subsystems,, in ''Computer Performance, (1977), 1.

[56]

C. E. Shannon and W. Weaver, A mathematical theory of communication,, Bell Syst. Tech. J., 27 (1948), 379.

[57]

J. Shore and R. Johnson, Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy,, IEEE Trans. Info. Theory, 26 (1980), 26. doi: 10.1109/TIT.1980.1056144.

[58]

J. E. Shore, Information theoretic approximations for M/G/1 and G/G/1 queuing systems,, Acta info., 17 (1982), 43.

[59]

K. Smith and D. D. Kouvatsos, "Entropy Maximisation and QNM with Blocking after Service,", Research report RS-08-01, (2001), 08.

[60]

K. Smith and D.D. Kouvatsos, Entropy maximisation and QNM with blocking before service,, in ''Proc. of the 2nd Annual Postgraduate Symposium on Convergence of Telecommunications, (2001), 78.

[61]

Y. Takahashi and H. Miyahara, An approximation method for open restricted queueing networks,, Oper. Res., 28 (1980), 594. doi: 10.1287/opre.28.3.594.

[62]

C. Tsallis, Possible generalisation of boltzmann-gibbs statistics,, Journal of Statistical Physics, 52 (1988), 479. doi: 10.1007/BF01016429.

[63]

M. Tribus, "Rational Descriptions, Decisions and Designs,", Pergamon, (1969).

[64]

B. R. Walstra, "Iterative Analysis of Networks of Queues,", Ph.D thesis, (1984).

[65]

D. Yao and J. A Buzacott, Modelling a class of state dependent routing in flexible manufacturing systems,, Annals of Oper. Res., 3 (1985), 153. doi: 10.1007/BF02024744.

[66]

, "Tsallis Statistics, Statistical Mechanics for Non-extensive Systems and Long-Range Interactions,", Notebook, (2007).

[1]

Zsolt Saffer, Wuyi Yue. A dual tandem queueing system with GI service time at the first queue. Journal of Industrial & Management Optimization, 2014, 10 (1) : 167-192. doi: 10.3934/jimo.2014.10.167

[2]

Ivan Landjev. On blocking sets in projective Hjelmslev planes. Advances in Mathematics of Communications, 2007, 1 (1) : 65-81. doi: 10.3934/amc.2007.1.65

[3]

D. G. Aronson, N. V. Mantzaris, Hans Othmer. Wave propagation and blocking in inhomogeneous media. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 843-876. doi: 10.3934/dcds.2005.13.843

[4]

Willem Mélange, Herwig Bruneel, Bart Steyaert, Dieter Claeys, Joris Walraevens. A continuous-time queueing model with class clustering and global FCFS service discipline. Journal of Industrial & Management Optimization, 2014, 10 (1) : 193-206. doi: 10.3934/jimo.2014.10.193

[5]

Kazuhisa Ichikawa. Synergistic effect of blocking cancer cell invasion revealed by computer simulations. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1189-1202. doi: 10.3934/mbe.2015.12.1189

[6]

M. Dolfin, D. Knopoff, L. Leonida, D. Maimone Ansaldo Patti. Escaping the trap of 'blocking': A kinetic model linking economic development and political competition. Kinetic & Related Models, 2017, 10 (2) : 423-443. doi: 10.3934/krm.2017016

[7]

Yang Woo Shin, Dug Hee Moon. Throughput of flow lines with unreliable parallel-machine workstations and blocking. Journal of Industrial & Management Optimization, 2017, 13 (2) : 901-916. doi: 10.3934/jimo.2016052

[8]

Ruijun Zhao, Jemal Mohammed-Awel. A mathematical model studying mosquito-stage transmission-blocking vaccines. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1229-1245. doi: 10.3934/mbe.2014.11.1229

[9]

Thomas Dauer, Marlies Gerber. Generic absence of finite blocking for interior points of Birkhoff billiards. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4871-4893. doi: 10.3934/dcds.2016010

[10]

Jemal Mohammed-Awel, Ruijun Zhao, Eric Numfor, Suzanne Lenhart. Management strategies in a malaria model combining human and transmission-blocking vaccines. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 977-1000. doi: 10.3934/dcdsb.2017049

[11]

Adel Dabah, Ahcene Bendjoudi, Abdelhakim AitZai. An efficient Tabu Search neighborhood based on reconstruction strategy to solve the blocking job shop scheduling problem. Journal of Industrial & Management Optimization, 2017, 13 (4) : 2015-2031. doi: 10.3934/jimo.2017029

[12]

Qingyun Wang, Xia Shi, Guanrong Chen. Delay-induced synchronization transition in small-world Hodgkin-Huxley neuronal networks with channel blocking. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 607-621. doi: 10.3934/dcdsb.2011.16.607

[13]

Jeongsim Kim, Bara Kim. Stability of a queue with discriminatory random order service discipline and heterogeneous servers. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1237-1254. doi: 10.3934/jimo.2016070

[14]

Wai-Ki Ching, Sin-Man Choi, Min Huang. Optimal service capacity in a multiple-server queueing system: A game theory approach. Journal of Industrial & Management Optimization, 2010, 6 (1) : 73-102. doi: 10.3934/jimo.2010.6.73

[15]

Fei Cheng, Shanlin Yang, Ram Akella, Xiaoting Tang. An integrated approach for selection of service vendors in service supply chain. Journal of Industrial & Management Optimization, 2011, 7 (4) : 907-925. doi: 10.3934/jimo.2011.7.907

[16]

Jun Wu, Shouyang Wang, Wuyi Yue. Supply contract model with service level constraint. Journal of Industrial & Management Optimization, 2005, 1 (3) : 275-287. doi: 10.3934/jimo.2005.1.275

[17]

Pikkala Vijaya Laxmi, Obsie Mussa Yesuf. Analysis of a finite buffer general input queue with Markovian service process and accessible and non-accessible batch service. Journal of Industrial & Management Optimization, 2010, 6 (4) : 929-944. doi: 10.3934/jimo.2010.6.929

[18]

Gábor Horváth, Zsolt Saffer, Miklós Telek. Queue length analysis of a Markov-modulated vacation queue with dependent arrival and service processes and exhaustive service policy. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1365-1381. doi: 10.3934/jimo.2016077

[19]

Michiel De Muynck, Herwig Bruneel, Sabine Wittevrongel. Analysis of a discrete-time queue with general service demands and phase-type service capacities. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1901-1926. doi: 10.3934/jimo.2017024

[20]

Tao Jiang, Liwei Liu. Analysis of a batch service multi-server polling system with dynamic service control. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1-15. doi: 10.3934/jimo.2017073

 Impact Factor: 

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (1)

[Back to Top]