• Previous Article
    Admission control by dynamic bandwidth reservation using road layout and bidirectional navigator in wireless multimedia networks
  • NACO Home
  • This Issue
  • Next Article
    Controlling delay differentiation with priority jumps: Analytical study
2011, 1(4): 639-656. doi: 10.3934/naco.2011.1.639

Multiserver retrial queues with after-call work

1. 

Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501

2. 

Department of Computer Science, Gunma University, Kiryu-City, 376-8515

Received  June 2011 Revised  August 2011 Published  November 2011

This paper considers a multiserver queueing system with finite capacity. Customers that find the service facility being fully occupied are blocked and enter a virtual waiting room (called orbit). Blocked customers stay in the orbit for an exponentially distributed time and retry to occupy an idle server again. After completing a service, the server starts an additional job that we call an after-call work. We formulate the queueing system using a continuous-time level-dependent quasi-birth-and-death process, for which a sufficient condition for the ergodicity is derived. We obtain an approximation to the stationary distribution by a direct truncation method whose truncation point is simply determined using an asymptotic analysis of a single server retrial queue. Some numerical examples are presented in order to show the influence of parameters on the performance of the system.
Citation: Tuan Phung-Duc, Ken’ichi Kawanishi. Multiserver retrial queues with after-call work . Numerical Algebra, Control & Optimization, 2011, 1 (4) : 639-656. doi: 10.3934/naco.2011.1.639
References:
[1]

J. R. Artalejo and M. Pozo, Numerical calculation of the stationary distribution of the main multiserver retrial queue,, Annals of Operations Research, 116 (2002) , 41. doi: 10.1023/A:1021359709489.

[2]

J. R. Artalejo and V. Pla, On the impact of customer balking, impatience and retrials in telecommunication systems,, Computers & Mathematics with Applications, 57 (2009) , 217. doi: 10.1016/j.camwa.2008.10.084.

[3]

L. Bright and G. P. Taylor, Calculating the equilibrium distribution in level dependent quasi-birth-and-death processes,, Stochastic Models, 11 (1995) , 497. doi: 10.1080/15326349508807357.

[4]

J. E. Diamond and A. S. Alfa, The MAP/PH/1 retrial queue,, Stochastic Models, 14 (1998) , 1151. doi: 10.1080/15326349808807518.

[5]

G. I. Falin and J. G. C. Templeton, "Retrial Queues,", Chapman & Hall, (1997) .

[6]

M. J. Fischer, D. A. Garbin and A. Gharakhanian, Performance modeling of distributed automatic call distribution systems,, Telecommunications Systems, 9 (1998) , 133. doi: 10.1023/A:1019139721840.

[7]

N. Gans, G. Koole and A. Mandelbaum, Telephone call centers: tutorial, review, and research prospects,, Manufacturing & Service Operations Management, 5 (2003) , 79. doi: 10.1287/msom.5.2.79.16071.

[8]

W. M. Jolley and R. J. Harris, Analysis of post-call activity in queueing systems,, Proceedings of the 9th International Teletraffic Congress, (1979) , 1.

[9]

K. Kawanishi, On the counting process for a class of Markovian arrival processes with an application to a queueing system,, Queueing Systems, 49 (2005) , 93. doi: 10.1007/s11134-005-6478-7.

[10]

J. Kim, B. Kim and S.-S. Ko, Tail asymptotics for the queue size distribution in an M/G/1 retrial queue,, Journal of Applied Probability, 44 (2007) , 1111. doi: 10.1239/jap/1197908829.

[11]

G. Koole and A. Mandelbaum, Queueing models of call centers: an introduction,, Annals of Operations Research, 113 (2002) , 41. doi: 10.1023/A:1020949626017.

[12]

J. D. C. Little, A proof for the queuing formula: $L = \lambda W$,, Operations Research, 9 (1961) , 383. doi: 10.1287/opre.9.3.383.

[13]

M. F. Neuts, "Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach,", Johns Hopkins University Press, (1981) .

[14]

M. F. Neuts and B. M. Rao, Numerical investigation of a multiserver retrial model,, Queueing Systems, 7 (1990) , 169. doi: 10.1007/BF01158473.

[15]

T. Phung-Duc, H. Masuyama, S. Kasahara and Y. Takahashi, State-dependent M/M/$c$/$c+r$ retrial queues with Bernoulli abandonment,, Journal of Industrial and Management Optimization, 6 () : 517. doi: 10.3934/jimo.2010.6.517.

[16]

T. Phung-Duc, H. Masuyama, S. Kasahara and Y. Takahashi, A simple algorithm for the rate matrices of level-dependent QBD processes,, Proceedings of the 5th International Conference on Queueing Theory and Network Applications, () : 46. doi: 10.1145/1837856.1837864.

[17]

T. Phung-Duc, H. Masuyama, S. Kasahara and Y. Takahashi, A matrix continued fraction approach to multi-server retrial queues,, to appear in Annals of Operations Research, (2011) . doi: 10.1007/s10479-011-0840-4.

[18]

R. L. Tweedie, Sufficient conditions for regularity, recurrence and ergodicity and Markov processes,, Mathematical Proceedings of the Cambridge Philosophical Society, 78 (1975) , 125. doi: 10.1017/S0305004100051562.

show all references

References:
[1]

J. R. Artalejo and M. Pozo, Numerical calculation of the stationary distribution of the main multiserver retrial queue,, Annals of Operations Research, 116 (2002) , 41. doi: 10.1023/A:1021359709489.

[2]

J. R. Artalejo and V. Pla, On the impact of customer balking, impatience and retrials in telecommunication systems,, Computers & Mathematics with Applications, 57 (2009) , 217. doi: 10.1016/j.camwa.2008.10.084.

[3]

L. Bright and G. P. Taylor, Calculating the equilibrium distribution in level dependent quasi-birth-and-death processes,, Stochastic Models, 11 (1995) , 497. doi: 10.1080/15326349508807357.

[4]

J. E. Diamond and A. S. Alfa, The MAP/PH/1 retrial queue,, Stochastic Models, 14 (1998) , 1151. doi: 10.1080/15326349808807518.

[5]

G. I. Falin and J. G. C. Templeton, "Retrial Queues,", Chapman & Hall, (1997) .

[6]

M. J. Fischer, D. A. Garbin and A. Gharakhanian, Performance modeling of distributed automatic call distribution systems,, Telecommunications Systems, 9 (1998) , 133. doi: 10.1023/A:1019139721840.

[7]

N. Gans, G. Koole and A. Mandelbaum, Telephone call centers: tutorial, review, and research prospects,, Manufacturing & Service Operations Management, 5 (2003) , 79. doi: 10.1287/msom.5.2.79.16071.

[8]

W. M. Jolley and R. J. Harris, Analysis of post-call activity in queueing systems,, Proceedings of the 9th International Teletraffic Congress, (1979) , 1.

[9]

K. Kawanishi, On the counting process for a class of Markovian arrival processes with an application to a queueing system,, Queueing Systems, 49 (2005) , 93. doi: 10.1007/s11134-005-6478-7.

[10]

J. Kim, B. Kim and S.-S. Ko, Tail asymptotics for the queue size distribution in an M/G/1 retrial queue,, Journal of Applied Probability, 44 (2007) , 1111. doi: 10.1239/jap/1197908829.

[11]

G. Koole and A. Mandelbaum, Queueing models of call centers: an introduction,, Annals of Operations Research, 113 (2002) , 41. doi: 10.1023/A:1020949626017.

[12]

J. D. C. Little, A proof for the queuing formula: $L = \lambda W$,, Operations Research, 9 (1961) , 383. doi: 10.1287/opre.9.3.383.

[13]

M. F. Neuts, "Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach,", Johns Hopkins University Press, (1981) .

[14]

M. F. Neuts and B. M. Rao, Numerical investigation of a multiserver retrial model,, Queueing Systems, 7 (1990) , 169. doi: 10.1007/BF01158473.

[15]

T. Phung-Duc, H. Masuyama, S. Kasahara and Y. Takahashi, State-dependent M/M/$c$/$c+r$ retrial queues with Bernoulli abandonment,, Journal of Industrial and Management Optimization, 6 () : 517. doi: 10.3934/jimo.2010.6.517.

[16]

T. Phung-Duc, H. Masuyama, S. Kasahara and Y. Takahashi, A simple algorithm for the rate matrices of level-dependent QBD processes,, Proceedings of the 5th International Conference on Queueing Theory and Network Applications, () : 46. doi: 10.1145/1837856.1837864.

[17]

T. Phung-Duc, H. Masuyama, S. Kasahara and Y. Takahashi, A matrix continued fraction approach to multi-server retrial queues,, to appear in Annals of Operations Research, (2011) . doi: 10.1007/s10479-011-0840-4.

[18]

R. L. Tweedie, Sufficient conditions for regularity, recurrence and ergodicity and Markov processes,, Mathematical Proceedings of the Cambridge Philosophical Society, 78 (1975) , 125. doi: 10.1017/S0305004100051562.

[1]

Sung-Seok Ko, Jangha Kang, E-Yeon Kwon. An $(s,S)$ inventory model with level-dependent $G/M/1$-Type structure. Journal of Industrial & Management Optimization, 2016, 12 (2) : 609-624. doi: 10.3934/jimo.2016.12.609

[2]

Feng Zhang, Jinting Wang, Bin Liu. On the optimal and equilibrium retrial rates in an unreliable retrial queue with vacations. Journal of Industrial & Management Optimization, 2012, 8 (4) : 861-875. doi: 10.3934/jimo.2012.8.861

[3]

Gábor Horváth, Zsolt Saffer, Miklós Telek. Queue length analysis of a Markov-modulated vacation queue with dependent arrival and service processes and exhaustive service policy. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1365-1381. doi: 10.3934/jimo.2016077

[4]

Pikkala Vijaya Laxmi, Obsie Mussa Yesuf. Analysis of a finite buffer general input queue with Markovian service process and accessible and non-accessible batch service. Journal of Industrial & Management Optimization, 2010, 6 (4) : 929-944. doi: 10.3934/jimo.2010.6.929

[5]

Redouane Qesmi, Hans-Otto Walther. Center-stable manifolds for differential equations with state-dependent delays. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 1009-1033. doi: 10.3934/dcds.2009.23.1009

[6]

Tuan Phung-Duc, Hiroyuki Masuyama, Shoji Kasahara, Yutaka Takahashi. State-dependent M/M/c/c + r retrial queues with Bernoulli abandonment. Journal of Industrial & Management Optimization, 2010, 6 (3) : 517-540. doi: 10.3934/jimo.2010.6.517

[7]

Jing Xu, Xue-Cheng Tai, Li-Lian Wang. A two-level domain decomposition method for image restoration. Inverse Problems & Imaging, 2010, 4 (3) : 523-545. doi: 10.3934/ipi.2010.4.523

[8]

Zhenlin Guo, Ping Lin, Guangrong Ji, Yangfan Wang. Retinal vessel segmentation using a finite element based binary level set method. Inverse Problems & Imaging, 2014, 8 (2) : 459-473. doi: 10.3934/ipi.2014.8.459

[9]

Wangtao Lu, Shingyu Leung, Jianliang Qian. An improved fast local level set method for three-dimensional inverse gravimetry. Inverse Problems & Imaging, 2015, 9 (2) : 479-509. doi: 10.3934/ipi.2015.9.479

[10]

Wen Chen, Song Wang. A finite difference method for pricing European and American options under a geometric Lévy process. Journal of Industrial & Management Optimization, 2015, 11 (1) : 241-264. doi: 10.3934/jimo.2015.11.241

[11]

Pierre Lissy. Construction of Gevrey functions with compact support using the Bray-Mandelbrojt iterative process and applications to the moment method in control theory. Mathematical Control & Related Fields, 2017, 7 (1) : 21-40. doi: 10.3934/mcrf.2017002

[12]

Rongfei Liu, Dingcheng Wang, Jiangyan Peng. Infinite-time ruin probability of a renewal risk model with exponential Levy process investment and dependent claims and inter-arrival times. Journal of Industrial & Management Optimization, 2017, 13 (2) : 995-1007. doi: 10.3934/jimo.2016058

[13]

Francisco Guillén-González, Mamadou Sy. Iterative method for mass diffusion model with density dependent viscosity. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 823-841. doi: 10.3934/dcdsb.2008.10.823

[14]

Carlangelo Liverani. On the work and vision of Dmitry Dolgopyat. Journal of Modern Dynamics, 2010, 4 (2) : 211-225. doi: 10.3934/jmd.2010.4.211

[15]

Roger Temam. Mark Vishik and his work. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1/2) : i-vi. doi: 10.3934/dcds.2004.10.1i

[16]

Yakov Pesin. On the work of Dolgopyat on partial and nonuniform hyperbolicity. Journal of Modern Dynamics, 2010, 4 (2) : 227-241. doi: 10.3934/jmd.2010.4.227

[17]

Ralf Spatzier. On the work of Rodriguez Hertz on rigidity in dynamics. Journal of Modern Dynamics, 2016, 10: 191-207. doi: 10.3934/jmd.2016.10.191

[18]

William E. Fitzgibbon. The work of Glenn F. Webb. Mathematical Biosciences & Engineering, 2015, 12 (4) : v-xvi. doi: 10.3934/mbe.2015.12.4v

[19]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1/2) : 29-48. doi: 10.3934/dcds.2009.23.29

[20]

Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

 Impact Factor: 

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]