2011, 18: 112-118. doi: 10.3934/era.2011.18.112

Order isomorphisms in windows

1. 

School of Mathematical Science, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel, Israel

2. 

School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978

Received  May 2011 Revised  July 2011 Published  September 2011

We characterize order preserving transforms on the class of lower-semi-continuous convex functions that are defined on a convex subset of $\mathbb{R}^n$ (a "window") and some of its variants. To this end, we investigate convexity preserving maps on subsets of $\mathbb{R}^n$. We prove that, in general, an order isomorphism is induced by a special convexity preserving point map on the epi-graph of the function. In the case of non-negative convex functions on $K$, where $0\in K$ and $f(0) = 0$, one may naturally partition the set of order isomorphisms into two classes; we explain the main ideas behind these results.
Citation: Shiri Artstein-Avidan, Dan Florentin, Vitali Milman. Order isomorphisms in windows. Electronic Research Announcements, 2011, 18: 112-118. doi: 10.3934/era.2011.18.112
References:
[1]

S. Artstein-Avidan, D. I. Florentin and V. Milman, "Fractional Linear Maps and Order Isomorphisms for Functions on Windows,", GAFA Lecture Notes, ().

[2]

S. Artstein-Avidan and V. Milman, The concept of duality in convex analysis, and the characterization of the Legendre transform,, Ann. of Math. (2), 169 (2009), 661.

[3]

S. Artstein-Avidan and V. Milman, A characterization of the concept of duality,, Electronic Research Announcements in Mathematical Sciences, 14 (2007), 48.

[4]

S. Artstein-Avidan and V. Milman, Hidden structures in the class of convex functions and a new duality transform,, J. Eur. Math. Soc., 13 ().

[5]

B. Grünbaum, "Convex Polytopes,", Second edition, 221 (2003).

[6]

D. Larman, "Recent Results in Convexity,", Proceedings of the International Congress of Mathematicians (Helsinki, (1978), 429.

[7]

R. T. Rockafellar, "Convex Analysis,", Princeton Mathematical Series, (1970).

[8]

B. Shiffman, Synthetic projective geometry and Poincaré's theorem on automorphisms of the ball,, Enseign. Math. (2), 41 (1995), 201.

show all references

References:
[1]

S. Artstein-Avidan, D. I. Florentin and V. Milman, "Fractional Linear Maps and Order Isomorphisms for Functions on Windows,", GAFA Lecture Notes, ().

[2]

S. Artstein-Avidan and V. Milman, The concept of duality in convex analysis, and the characterization of the Legendre transform,, Ann. of Math. (2), 169 (2009), 661.

[3]

S. Artstein-Avidan and V. Milman, A characterization of the concept of duality,, Electronic Research Announcements in Mathematical Sciences, 14 (2007), 48.

[4]

S. Artstein-Avidan and V. Milman, Hidden structures in the class of convex functions and a new duality transform,, J. Eur. Math. Soc., 13 ().

[5]

B. Grünbaum, "Convex Polytopes,", Second edition, 221 (2003).

[6]

D. Larman, "Recent Results in Convexity,", Proceedings of the International Congress of Mathematicians (Helsinki, (1978), 429.

[7]

R. T. Rockafellar, "Convex Analysis,", Princeton Mathematical Series, (1970).

[8]

B. Shiffman, Synthetic projective geometry and Poincaré's theorem on automorphisms of the ball,, Enseign. Math. (2), 41 (1995), 201.

[1]

Khalida Inayat Noor, Muhammad Aslam Noor. Higher order uniformly close-to-convex functions. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1277-1290. doi: 10.3934/dcdss.2015.8.1277

[2]

Therese Mur, Hernan R. Henriquez. Relative controllability of linear systems of fractional order with delay. Mathematical Control & Related Fields, 2015, 5 (4) : 845-858. doi: 10.3934/mcrf.2015.5.845

[3]

Małgorzata Wyrwas, Dorota Mozyrska, Ewa Girejko. Subdifferentials of convex functions on time scales. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 671-691. doi: 10.3934/dcds.2011.29.671

[4]

Gang Li, Lipu Zhang, Zhe Liu. The stable duality of DC programs for composite convex functions. Journal of Industrial & Management Optimization, 2017, 13 (1) : 63-79. doi: 10.3934/jimo.2016004

[5]

Pooja Louhan, S. K. Suneja. On fractional vector optimization over cones with support functions. Journal of Industrial & Management Optimization, 2017, 13 (2) : 549-572. doi: 10.3934/jimo.2016031

[6]

Naoufel Ben Abdallah, Irene M. Gamba, Giuseppe Toscani. On the minimization problem of sub-linear convex functionals. Kinetic & Related Models, 2011, 4 (4) : 857-871. doi: 10.3934/krm.2011.4.857

[7]

Lijia Yan. Some properties of a class of $(F,E)$-$G$ generalized convex functions. Numerical Algebra, Control & Optimization, 2013, 3 (4) : 615-625. doi: 10.3934/naco.2013.3.615

[8]

Shu-Lin Lyu. On the Hermite--Hadamard inequality for convex functions of two variables. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 1-8. doi: 10.3934/naco.2014.4.1

[9]

Yuying Zhou, Gang Li. The Toland-Fenchel-Lagrange duality of DC programs for composite convex functions. Numerical Algebra, Control & Optimization, 2014, 4 (1) : 9-23. doi: 10.3934/naco.2014.4.9

[10]

Peter Ashwin, Xin-Chu Fu. Symbolic analysis for some planar piecewise linear maps. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1533-1548. doi: 10.3934/dcds.2003.9.1533

[11]

Nguyen Thi Bach Kim, Nguyen Canh Nam, Le Quang Thuy. An outcome space algorithm for minimizing the product of two convex functions over a convex set. Journal of Industrial & Management Optimization, 2013, 9 (1) : 243-253. doi: 10.3934/jimo.2013.9.243

[12]

Horst R. Thieme. Eigenvectors of homogeneous order-bounded order-preserving maps. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1073-1097. doi: 10.3934/dcdsb.2017053

[13]

Fausto Ferrari. Mean value properties of fractional second order operators. Communications on Pure & Applied Analysis, 2015, 14 (1) : 83-106. doi: 10.3934/cpaa.2015.14.83

[14]

Dina Tavares, Ricardo Almeida, Delfim F. M. Torres. Fractional Herglotz variational problems of variable order. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 143-154. doi: 10.3934/dcdss.2018009

[15]

Peter Giesl, Sigurdur Hafstein. Existence of piecewise linear Lyapunov functions in arbitrary dimensions. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3539-3565. doi: 10.3934/dcds.2012.32.3539

[16]

Fan Sha, Deren Han, Weijun Zhong. Bounds on price of anarchy on linear cost functions. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1165-1173. doi: 10.3934/jimo.2015.11.1165

[17]

Wolfgang Arendt, Patrick J. Rabier. Linear evolution operators on spaces of periodic functions. Communications on Pure & Applied Analysis, 2009, 8 (1) : 5-36. doi: 10.3934/cpaa.2009.8.5

[18]

Ingrid Daubechies, Gerd Teschke, Luminita Vese. Iteratively solving linear inverse problems under general convex constraints. Inverse Problems & Imaging, 2007, 1 (1) : 29-46. doi: 10.3934/ipi.2007.1.29

[19]

T. Gilbert, J. R. Dorfman. On the parametric dependences of a class of non-linear singular maps. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 391-406. doi: 10.3934/dcdsb.2004.4.391

[20]

Makoto Mori. Higher order mixing property of piecewise linear transformations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 915-934. doi: 10.3934/dcds.2000.6.915

2016 Impact Factor: 0.483

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

[Back to Top]