2004, 4(4): 911-920. doi: 10.3934/dcdsb.2004.4.911

A criterion for non-persistence of travelling breathers for perturbations of the Ablowitz--Ladik lattice

1. 

Institute of Mechanics, Vienna University of Technology, A-1040 Vienna, Austria

2. 

Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom

3. 

Department of Mathematics and Computer Science, University of Leicester, Leicester, LE1 7RH

Received  February 2003 Revised  December 2003 Published  August 2004

The Ablowitz-Ladik lattice has a two-parameter family of travelling breathers. We derive a necessary condition for their persistence under perturbations of the system. From this we deduce non-persistence for a variety of examples of perturbations. In particular, we show that travelling breathers do not persist under many reversible perturbations unless an additional symmetry is preserved, and we address the case of Hamiltonian perturbations.
Citation: A. Berger, R.S. MacKay, Vassilis Rothos. A criterion for non-persistence of travelling breathers for perturbations of the Ablowitz--Ladik lattice. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 911-920. doi: 10.3934/dcdsb.2004.4.911
[1]

Rehana Naz, Fazal M. Mahomed. Characterization of partial Hamiltonian operators and related first integrals. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 723-734. doi: 10.3934/dcdss.2018045

[2]

Richard A. Norton, G. R. W. Quispel. Discrete gradient methods for preserving a first integral of an ordinary differential equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1147-1170. doi: 10.3934/dcds.2014.34.1147

[3]

Xiangjin Xu. Sub-harmonics of first order Hamiltonian systems and their asymptotic behaviors. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 643-654. doi: 10.3934/dcdsb.2003.3.643

[4]

Juntao Sun, Jifeng Chu, Zhaosheng Feng. Homoclinic orbits for first order periodic Hamiltonian systems with spectrum point zero. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3807-3824. doi: 10.3934/dcds.2013.33.3807

[5]

Cyril Joel Batkam. Homoclinic orbits of first-order superquadratic Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3353-3369. doi: 10.3934/dcds.2014.34.3353

[6]

Carl-Friedrich Kreiner, Johannes Zimmer. Heteroclinic travelling waves for the lattice sine-Gordon equation with linear pair interaction. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 915-931. doi: 10.3934/dcds.2009.25.915

[7]

Zhaoquan Xu, Jiying Ma. Monotonicity, asymptotics and uniqueness of travelling wave solution of a non-local delayed lattice dynamical system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5107-5131. doi: 10.3934/dcds.2015.35.5107

[8]

Chungen Liu, Xiaofei Zhang. Subharmonic solutions and minimal periodic solutions of first-order Hamiltonian systems with anisotropic growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1559-1574. doi: 10.3934/dcds.2017064

[9]

Francesco Piazza, Yves-Henri Sanejouand. Breather-mediated energy transfer in proteins. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1247-1266. doi: 10.3934/dcdss.2011.4.1247

[10]

Guillaume James, Dmitry Pelinovsky. Breather continuation from infinity in nonlinear oscillator chains. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1775-1799. doi: 10.3934/dcds.2012.32.1775

[11]

Azucena Álvarez, Francisco R. Romero, José M. Romero, Juan F. R. Archilla. Nonsymmetric moving breather collisions in the Peyrard-Bishop DNA model. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 995-1006. doi: 10.3934/dcdss.2011.4.995

[12]

Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867

[13]

Kang-Ling Liao, Chih-Wen Shih. A Lattice model on somitogenesis of zebrafish. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2789-2814. doi: 10.3934/dcdsb.2012.17.2789

[14]

Carlos Tomei. The Toda lattice, old and new. Journal of Geometric Mechanics, 2013, 5 (4) : 511-530. doi: 10.3934/jgm.2013.5.511

[15]

William D. Kalies, Konstantin Mischaikow, Robert C.A.M. Vandervorst. Lattice structures for attractors I. Journal of Computational Dynamics, 2014, 1 (2) : 307-338. doi: 10.3934/jcd.2014.1.307

[16]

Wei-Ming Ni, Xuefeng Wang. On the first positive Neumann eigenvalue. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 1-19. doi: 10.3934/dcds.2007.17.1

[17]

Robert Brooks and Eran Makover. The first eigenvalue of a Riemann surface. Electronic Research Announcements, 1999, 5: 76-81.

[18]

J. Cuevas, J. C. Eilbeck, N. I. Karachalios. Thresholds for breather solutions of the discrete nonlinear Schrödinger equation with saturable and power nonlinearity. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 445-475. doi: 10.3934/dcds.2008.21.445

[19]

Gilles Carbou, Stéphane Labbé, Emmanuel Trélat. Control of travelling walls in a ferromagnetic nanowire. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 51-59. doi: 10.3934/dcdss.2008.1.51

[20]

Matthew H. Chan, Peter S. Kim, Robert Marangell. Stability of travelling waves in a Wolbachia invasion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 609-628. doi: 10.3934/dcdsb.2018036

2016 Impact Factor: 0.994

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]