-
Previous Article
On lattices, binary codes, and network codes
- AMC Home
- This Issue
-
Next Article
Canonization of linear codes over $\mathbb Z$4
Algebraic structure of the minimal support codewords set of some linear codes
1. | Dpto. Álgebra, Geometría y Topología, Universidad de Valladolid, Castilla, Spain |
2. | Dpto. Matemática Aplicada, Universidad de Valladolid, Castilla, Spain |
References:
[1] |
A. Barg, Complexity issues in coding theory,, in, I (1998), 649.
|
[2] |
E. R. Berlekamp, R. J. McEliece and H. C. A. van Tilborg, On the inherent intractability of certain coding problems,, IEEE Trans. Inform. Theory, IT-24 (1978), 384.
doi: 10.1109/TIT.1978.1055873. |
[3] |
T. Bogart, A. N. Jensen and R. R. Thomas, The circuit ideal of a vector configuration,, J. Algebra, 308 (2007), 518.
doi: 10.1016/j.jalgebra.2006.07.025. |
[4] |
M. Borges-Quintana, M. A. Borges-Trenard, P. Fitzpatrick and E. Martínez-Moro, Gröbner bases and combinatorics for binary codes,, Appl. Algebra Engrg. Comm. Comput., 19 (2008), 393.
doi: 10.1007/s00200-008-0080-2. |
[5] |
M. Borges-Quintana, M. A. Borges-Trenard, I. Márquez-Corbella and E. Martínez-Moro, An algebraic view to gradient descent decoding,, in, (2010). |
[6] |
M. Borges-Quintana, M. A. Borges-Trenard and E. Martínez-Moro, A Gröbner bases structure associated to linear codes,, J. Discrete Math. Sci. Cryptogr., 10 (2007), 151.
|
[7] |
Y. Borissov and N. Manev, Minimal codewords in linear codes,, Serdica Math. J., 30 (2004), 303.
|
[8] |
J. Bruck and M. Naor, The hardness of decoding linear codes with preprocessing,, IEEE Trans. Inform. Theory, 36 (1990), 381.
doi: 10.1109/18.52484. |
[9] |
P. Conti and C. Traverso, Buchberger algorithm and integer programming,, in, (1991), 130.
|
[10] |
F. Di Biase and R. Urbanke, An algorithm to calculate the kernel of certain polynomial ring homomorphisms,, Experiment. Math., 4 (1995), 227.
|
[11] |
T. Y. Hwang, Decoding linear block codes for minimizing word error rate,, IEEE Trans. Inform. Theory, 25 (1979), 733.
doi: 10.1109/TIT.1979.1056120. |
[12] |
D. Ikegami and Y. Kaji, Maximum likelihood decoding for linear block codes using Gröbner bases,, IEICE Trans. Fund. Electron. Commun. Comput. Sci., 3 (2003), 643. |
[13] |
R. Liebler, Implementing gradient descent decoding,, Michigan Math. J., 58 (2009), 285.
doi: 10.1307/mmj/1242071693. |
[14] |
J. L. Massey, Minimal Codewords and Secret Sharing,, in, (1993), 246. |
[15] |
H. Ohsugi, D. Ikegami, T. Kitamura and T. Hibi, Gröbner bases bases of certain zero-dimensional ideals arising in coding theory,, Adv. Appl. Math., 31 (2003), 420.
doi: 10.1016/S0196-8858(03)00019-8. |
[16] |
P. Pisón-Casares and A. Vigneron-Tenorio, On Lawrence semigroups,, J. Symb. Comput., 43 (2008), 804.
doi: 10.1016/j.jsc.2008.02.003. |
[17] |
A. Schrijver, "Theory of Linear and Integer Programming,'', Wiley-Interscience, (1996).
|
[18] |
B. Sturmfels, "Gröbner Bases and Convex Polytopes,'', American Mathematical Society, (1996).
|
show all references
References:
[1] |
A. Barg, Complexity issues in coding theory,, in, I (1998), 649.
|
[2] |
E. R. Berlekamp, R. J. McEliece and H. C. A. van Tilborg, On the inherent intractability of certain coding problems,, IEEE Trans. Inform. Theory, IT-24 (1978), 384.
doi: 10.1109/TIT.1978.1055873. |
[3] |
T. Bogart, A. N. Jensen and R. R. Thomas, The circuit ideal of a vector configuration,, J. Algebra, 308 (2007), 518.
doi: 10.1016/j.jalgebra.2006.07.025. |
[4] |
M. Borges-Quintana, M. A. Borges-Trenard, P. Fitzpatrick and E. Martínez-Moro, Gröbner bases and combinatorics for binary codes,, Appl. Algebra Engrg. Comm. Comput., 19 (2008), 393.
doi: 10.1007/s00200-008-0080-2. |
[5] |
M. Borges-Quintana, M. A. Borges-Trenard, I. Márquez-Corbella and E. Martínez-Moro, An algebraic view to gradient descent decoding,, in, (2010). |
[6] |
M. Borges-Quintana, M. A. Borges-Trenard and E. Martínez-Moro, A Gröbner bases structure associated to linear codes,, J. Discrete Math. Sci. Cryptogr., 10 (2007), 151.
|
[7] |
Y. Borissov and N. Manev, Minimal codewords in linear codes,, Serdica Math. J., 30 (2004), 303.
|
[8] |
J. Bruck and M. Naor, The hardness of decoding linear codes with preprocessing,, IEEE Trans. Inform. Theory, 36 (1990), 381.
doi: 10.1109/18.52484. |
[9] |
P. Conti and C. Traverso, Buchberger algorithm and integer programming,, in, (1991), 130.
|
[10] |
F. Di Biase and R. Urbanke, An algorithm to calculate the kernel of certain polynomial ring homomorphisms,, Experiment. Math., 4 (1995), 227.
|
[11] |
T. Y. Hwang, Decoding linear block codes for minimizing word error rate,, IEEE Trans. Inform. Theory, 25 (1979), 733.
doi: 10.1109/TIT.1979.1056120. |
[12] |
D. Ikegami and Y. Kaji, Maximum likelihood decoding for linear block codes using Gröbner bases,, IEICE Trans. Fund. Electron. Commun. Comput. Sci., 3 (2003), 643. |
[13] |
R. Liebler, Implementing gradient descent decoding,, Michigan Math. J., 58 (2009), 285.
doi: 10.1307/mmj/1242071693. |
[14] |
J. L. Massey, Minimal Codewords and Secret Sharing,, in, (1993), 246. |
[15] |
H. Ohsugi, D. Ikegami, T. Kitamura and T. Hibi, Gröbner bases bases of certain zero-dimensional ideals arising in coding theory,, Adv. Appl. Math., 31 (2003), 420.
doi: 10.1016/S0196-8858(03)00019-8. |
[16] |
P. Pisón-Casares and A. Vigneron-Tenorio, On Lawrence semigroups,, J. Symb. Comput., 43 (2008), 804.
doi: 10.1016/j.jsc.2008.02.003. |
[17] |
A. Schrijver, "Theory of Linear and Integer Programming,'', Wiley-Interscience, (1996).
|
[18] |
B. Sturmfels, "Gröbner Bases and Convex Polytopes,'', American Mathematical Society, (1996).
|
[1] |
Ismara Álvarez-Barrientos, Mijail Borges-Quintana, Miguel Angel Borges-Trenard, Daniel Panario. Computing Gröbner bases associated with lattices. Advances in Mathematics of Communications, 2016, 10 (4) : 851-860. doi: 10.3934/amc.2016045 |
[2] |
Zhiguo Feng, Ka-Fai Cedric Yiu. Manifold relaxations for integer programming. Journal of Industrial & Management Optimization, 2014, 10 (2) : 557-566. doi: 10.3934/jimo.2014.10.557 |
[3] |
Oliver Junge, Alex Schreiber. Dynamic programming using radial basis functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4439-4453. doi: 10.3934/dcds.2015.35.4439 |
[4] |
Yongjian Yang, Zhiyou Wu, Fusheng Bai. A filled function method for constrained nonlinear integer programming. Journal of Industrial & Management Optimization, 2008, 4 (2) : 353-362. doi: 10.3934/jimo.2008.4.353 |
[5] |
Zhenbo Wang, Shu-Cherng Fang, David Y. Gao, Wenxun Xing. Global extremal conditions for multi-integer quadratic programming. Journal of Industrial & Management Optimization, 2008, 4 (2) : 213-225. doi: 10.3934/jimo.2008.4.213 |
[6] |
Jing Quan, Zhiyou Wu, Guoquan Li. Global optimality conditions for some classes of polynomial integer programming problems. Journal of Industrial & Management Optimization, 2011, 7 (1) : 67-78. doi: 10.3934/jimo.2011.7.67 |
[7] |
Ye Tian, Cheng Lu. Nonconvex quadratic reformulations and solvable conditions for mixed integer quadratic programming problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1027-1039. doi: 10.3934/jimo.2011.7.1027 |
[8] |
Mohamed A. Tawhid, Ahmed F. Ali. A simplex grey wolf optimizer for solving integer programming and minimax problems. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 301-323. doi: 10.3934/naco.2017020 |
[9] |
René Henrion, Christian Küchler, Werner Römisch. Discrepancy distances and scenario reduction in two-stage stochastic mixed-integer programming. Journal of Industrial & Management Optimization, 2008, 4 (2) : 363-384. doi: 10.3934/jimo.2008.4.363 |
[10] |
Louis Caccetta, Syarifah Z. Nordin. Mixed integer programming model for scheduling in unrelated parallel processor system with priority consideration. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 115-132. doi: 10.3934/naco.2014.4.115 |
[11] |
Edward S. Canepa, Alexandre M. Bayen, Christian G. Claudel. Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming. Networks & Heterogeneous Media, 2013, 8 (3) : 783-802. doi: 10.3934/nhm.2013.8.783 |
[12] |
Elham Mardaneh, Ryan Loxton, Qun Lin, Phil Schmidli. A mixed-integer linear programming model for optimal vessel scheduling in offshore oil and gas operations. Journal of Industrial & Management Optimization, 2017, 13 (4) : 1601-1623. doi: 10.3934/jimo.2017009 |
[13] |
Wan Nor Ashikin Wan Ahmad Fatthi, Adibah Shuib, Rosma Mohd Dom. A mixed integer programming model for solving real-time truck-to-door assignment and scheduling problem at cross docking warehouse. Journal of Industrial & Management Optimization, 2016, 12 (2) : 431-447. doi: 10.3934/jimo.2016.12.431 |
[14] |
Manish K. Gupta, Chinnappillai Durairajan. On the covering radius of some modular codes. Advances in Mathematics of Communications, 2014, 8 (2) : 129-137. doi: 10.3934/amc.2014.8.129 |
[15] |
Martin D. Buhmann, Slawomir Dinew. Limits of radial basis function interpolants. Communications on Pure & Applied Analysis, 2007, 6 (3) : 569-585. doi: 10.3934/cpaa.2007.6.569 |
[16] |
Dubi Kelmer. Quadratic irrationals and linking numbers of modular knots. Journal of Modern Dynamics, 2012, 6 (4) : 539-561. doi: 10.3934/jmd.2012.6.539 |
[17] |
Robert L. Griess Jr., Ching Hung Lam. Groups of Lie type, vertex algebras, and modular moonshine. Electronic Research Announcements, 2014, 21: 167-176. doi: 10.3934/era.2014.21.167 |
[18] |
Jayadev S. Athreya, Gregory A. Margulis. Values of random polynomials at integer points. Journal of Modern Dynamics, 2018, 12: 9-16. doi: 10.3934/jmd.2018002 |
[19] |
Igor E. Shparlinski. Close values of shifted modular inversions and the decisional modular inversion hidden number problem. Advances in Mathematics of Communications, 2015, 9 (2) : 169-176. doi: 10.3934/amc.2015.9.169 |
[20] |
Sohana Jahan, Hou-Duo Qi. Regularized multidimensional scaling with radial basis functions. Journal of Industrial & Management Optimization, 2016, 12 (2) : 543-563. doi: 10.3934/jimo.2016.12.543 |
2016 Impact Factor: 0.8
Tools
Metrics
Other articles
by authors
[Back to Top]