• Previous Article
    New cases of differentiable rigidity for partially hyperbolic actions: Symplectic groups and resonance directions
  • JMD Home
  • This Issue
  • Next Article
    Structure of attractors for $(a,b)$-continued fraction transformations
2010, 4(4): 609-635. doi: 10.3934/jmd.2010.4.609

Ratner's property and mild mixing for special flows over two-dimensional rotations

1. 

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń

2. 

Faculty of Mathematics and Computer Science, N. Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland

Received  February 2010 Revised  December 2010 Published  January 2011

We consider special flows over two-dimensional rotations by $(\alpha,\beta)$ on $\T^2$ and under piecewise $C^2$ roof functions $f$ satisfying von Neumann's condition $\int_{\T^2}f_x(x,y)dxdy\ne 0$ or $\int_{\T^2}f_y(x,y)dxdy\ne 0 $. Such flows are shown to be always weakly mixing and never partially rigid. It is proved that while specifying to a subclass of roof functions and to ergodic rotations for which $\alpha$ and $\beta$ are of bounded partial quotients the corresponding special flows enjoy the so-called weak Ratner property. As a consequence, such flows turn out to be mildly mixing.
Citation: Krzysztof Frączek, Mariusz Lemańczyk. Ratner's property and mild mixing for special flows over two-dimensional rotations. Journal of Modern Dynamics, 2010, 4 (4) : 609-635. doi: 10.3934/jmd.2010.4.609
References:
[1]

J.-P. Allouche and J. Shallit, "Automatic Sequences. Theory, Applications, Generalizations,", Cambridge Univ. Press, (2003). doi: 10.1017/CBO9780511546563.

[2]

V. I. Arnold, Topological and ergodic properties of closed 1-forms with incommensurable periods,, (Russian) Funktsional. Anal. i Prilozhen., 25 (1991), 1.

[3]

I. P. Cornfeld, S. V. Fomin and Y. G. Sinai, "Ergodic Theory,", Translated from the Russian by A. B. Sosinskii. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (1982).

[4]

B. Fayad, Polynomial decay of correlations for a class of smooth flows on the two torus,, Bull. Soc. Math. France, 129 (2001), 487.

[5]

B. Fayad, Analytic mixing reparametrizations of irrational flows,, Ergodic Theory Dynam. Systems, 22 (2002), 437. doi: 10.1017/S0143385702000214.

[6]

B. Fayad, Smooth mixing flows with purely singular spectra,, Duke Math. J., 132 (2006), 371. doi: 10.1215/S0012-7094-06-13225-8.

[7]

K. Frączek and M. Lemańczyk, A class of special flows over irrational rotations which is disjoint from mixing flows,, Ergodic Theory Dynam. Systems, 24 (2004), 1083. doi: 10.1017/S0143385704000112.

[8]

K. Frączek and M. Lemańczyk, On mild mixing of special flows over irrational rotations under piecewise smooth functions,, Ergodic Theory Dynam. Systems, 26 (2006), 719. doi: 10.1017/S0143385706000046.

[9]

K. Frączek, M. Lemańczyk and E. Lesigne, Mild mixing property for special flows under piecewise constant functions,, Discrete Contin. Dynam. Syst., 19 (2007), 691. doi: 10.3934/dcds.2007.19.691.

[10]

K. Frączek and M. Lemańczyk, On the self-similarity problem for ergodic flows,, Proc. London Math. Soc., 99 (2009), 658. doi: 10.1112/plms/pdp013.

[11]

K. Frączek and M. Lemańczyk, A class of mixing special flows over two-dimensional rotations,, submitted., ().

[12]

K. Frączek and M. Lemańczyk, Ratner's property and mixing for special flows over two-dimensional rotations,, \arXiv{1002.2734}., ().

[13]

H. Furstenberg and B. Weiss, The finite multipliers of infinite ergodic transformations. The structure of attractors in dynamical systems,, (Proc. Conf., (1977), 127.

[14]

B. Host, Mixing of all orders and pairwise independent joinings of systems with singular spectrum,, Israel J. Math., 76 (1991), 289. doi: 10.1007/BF02773866.

[15]

A. Iwanik, M. Lemańczyk and C. Mauduit, Piecewise absolutely continuous cocycles over irrational rotations,, J. London Math. Soc. (2), 59 (1999), 171. doi: 10.1112/S0024610799006961.

[16]

A. Katok, Cocycles, cohomology and combinatorial constructions in ergodic theory,, In collaboration with E. A. Robinson, (1999), 107.

[17]

A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems,, With a supplementary chapter by Katok and Leonardo Mendoza. Encyclopedia of Mathematics and its Applications, (1995).

[18]

K. M. Khanin and Y. G. Sinai, Mixing of some classes of special flows over rotations of the circle,, (Russian) Funktsional. Anal. i Prilozhen., 26 (1992), 1.

[19]

Y. Khinchin, "Continued Fractions,", The University of Chicago Press, (1964).

[20]

A. V. Kochergin, The absence of mixing in special flows over a rotation of the circle and in flows on a two-dimensional torus,, (Russian) Dokl. Akad. Nauk SSSR, 205 (1972), 515.

[21]

A. V. Kochergin, Mixing in special flows over a rearrangement of segments and in smooth flows on surfaces,, (Russian) Mat. Sb., 96 (1975), 471.

[22]

A. V. Kochergin, Non-degenerated saddles and absence of mixing,, (Russian) Mat. Zametki, 19 (1976), 453.

[23]

A. V. Kochergin, A mixing special flow over a rotation of the circle with an almost Lipschitz function,, (Russian) Mat. Sb., 193 (2002), 51.

[24]

A. V. Kochergin, Nondegenerate fixed points and mixing in flows on a two-dimensional torus. II,, (Russian) Mat. Sb., 195 (2004), 15.

[25]

A. V. Kochergin, Causes of stretching of Birkhoff sums and mixing in flows on surfaces,, Dynamics, (2007), 129.

[26]

M. Lemańczyk, Sur l'absence de mélange pour des flots spéciaux au dessus d'une rotation irrationnelle,, (French) [Absence of mixing for special flows over an irrational rotation] Dedicated to the memory of Anzelm Iwanik. Colloq. Math., 84/85 (2000), 29.

[27]

J. von Neumann, Zur Operatorenmethode in der Klassichen Mechanik,, (German), 33 (1932), 587. doi: 10.2307/1968537.

[28]

M. Ratner, Horocycle flows, joinings and rigidity of products,, Ann. of Math. (2), 118 (1983), 277. doi: 10.2307/2007030.

[29]

V. V. Ryzhikov and J.-P. Thouvenot, Disjointness, divisibility, and quasi-simplicity of measure-preserving actions,, (Russian) Funktsional. Anal. i Prilozhen., 40 (2006), 85.

[30]

J.-P. Thouvenot, Some properties and applications of joinings in ergodic theory,, Ergodic theory and its connections with harmonic analysis (Alexandria, (1993), 207.

[31]

K. Schmidt, Dispersing cocycles and mixing flows under functions,, Fund. Math., 173 (2002), 191. doi: 10.4064/fm173-2-6.

[32]

D. Witte, Rigidity of some translations on homogeneous spaces,, Invent. Math., 81 (1985), 1. doi: 10.1007/BF01388769.

[33]

J.-Ch. Yoccoz, Centralisateurs et conjugaison différentiable des difféomorphismes du cercle,, (French) [Centralizers and differentiable conjugacy of diffeomorphisms of the circle] Petits diviseurs en dimension $1$. Astérisque No. 231, (1995), 89.

show all references

References:
[1]

J.-P. Allouche and J. Shallit, "Automatic Sequences. Theory, Applications, Generalizations,", Cambridge Univ. Press, (2003). doi: 10.1017/CBO9780511546563.

[2]

V. I. Arnold, Topological and ergodic properties of closed 1-forms with incommensurable periods,, (Russian) Funktsional. Anal. i Prilozhen., 25 (1991), 1.

[3]

I. P. Cornfeld, S. V. Fomin and Y. G. Sinai, "Ergodic Theory,", Translated from the Russian by A. B. Sosinskii. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (1982).

[4]

B. Fayad, Polynomial decay of correlations for a class of smooth flows on the two torus,, Bull. Soc. Math. France, 129 (2001), 487.

[5]

B. Fayad, Analytic mixing reparametrizations of irrational flows,, Ergodic Theory Dynam. Systems, 22 (2002), 437. doi: 10.1017/S0143385702000214.

[6]

B. Fayad, Smooth mixing flows with purely singular spectra,, Duke Math. J., 132 (2006), 371. doi: 10.1215/S0012-7094-06-13225-8.

[7]

K. Frączek and M. Lemańczyk, A class of special flows over irrational rotations which is disjoint from mixing flows,, Ergodic Theory Dynam. Systems, 24 (2004), 1083. doi: 10.1017/S0143385704000112.

[8]

K. Frączek and M. Lemańczyk, On mild mixing of special flows over irrational rotations under piecewise smooth functions,, Ergodic Theory Dynam. Systems, 26 (2006), 719. doi: 10.1017/S0143385706000046.

[9]

K. Frączek, M. Lemańczyk and E. Lesigne, Mild mixing property for special flows under piecewise constant functions,, Discrete Contin. Dynam. Syst., 19 (2007), 691. doi: 10.3934/dcds.2007.19.691.

[10]

K. Frączek and M. Lemańczyk, On the self-similarity problem for ergodic flows,, Proc. London Math. Soc., 99 (2009), 658. doi: 10.1112/plms/pdp013.

[11]

K. Frączek and M. Lemańczyk, A class of mixing special flows over two-dimensional rotations,, submitted., ().

[12]

K. Frączek and M. Lemańczyk, Ratner's property and mixing for special flows over two-dimensional rotations,, \arXiv{1002.2734}., ().

[13]

H. Furstenberg and B. Weiss, The finite multipliers of infinite ergodic transformations. The structure of attractors in dynamical systems,, (Proc. Conf., (1977), 127.

[14]

B. Host, Mixing of all orders and pairwise independent joinings of systems with singular spectrum,, Israel J. Math., 76 (1991), 289. doi: 10.1007/BF02773866.

[15]

A. Iwanik, M. Lemańczyk and C. Mauduit, Piecewise absolutely continuous cocycles over irrational rotations,, J. London Math. Soc. (2), 59 (1999), 171. doi: 10.1112/S0024610799006961.

[16]

A. Katok, Cocycles, cohomology and combinatorial constructions in ergodic theory,, In collaboration with E. A. Robinson, (1999), 107.

[17]

A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems,, With a supplementary chapter by Katok and Leonardo Mendoza. Encyclopedia of Mathematics and its Applications, (1995).

[18]

K. M. Khanin and Y. G. Sinai, Mixing of some classes of special flows over rotations of the circle,, (Russian) Funktsional. Anal. i Prilozhen., 26 (1992), 1.

[19]

Y. Khinchin, "Continued Fractions,", The University of Chicago Press, (1964).

[20]

A. V. Kochergin, The absence of mixing in special flows over a rotation of the circle and in flows on a two-dimensional torus,, (Russian) Dokl. Akad. Nauk SSSR, 205 (1972), 515.

[21]

A. V. Kochergin, Mixing in special flows over a rearrangement of segments and in smooth flows on surfaces,, (Russian) Mat. Sb., 96 (1975), 471.

[22]

A. V. Kochergin, Non-degenerated saddles and absence of mixing,, (Russian) Mat. Zametki, 19 (1976), 453.

[23]

A. V. Kochergin, A mixing special flow over a rotation of the circle with an almost Lipschitz function,, (Russian) Mat. Sb., 193 (2002), 51.

[24]

A. V. Kochergin, Nondegenerate fixed points and mixing in flows on a two-dimensional torus. II,, (Russian) Mat. Sb., 195 (2004), 15.

[25]

A. V. Kochergin, Causes of stretching of Birkhoff sums and mixing in flows on surfaces,, Dynamics, (2007), 129.

[26]

M. Lemańczyk, Sur l'absence de mélange pour des flots spéciaux au dessus d'une rotation irrationnelle,, (French) [Absence of mixing for special flows over an irrational rotation] Dedicated to the memory of Anzelm Iwanik. Colloq. Math., 84/85 (2000), 29.

[27]

J. von Neumann, Zur Operatorenmethode in der Klassichen Mechanik,, (German), 33 (1932), 587. doi: 10.2307/1968537.

[28]

M. Ratner, Horocycle flows, joinings and rigidity of products,, Ann. of Math. (2), 118 (1983), 277. doi: 10.2307/2007030.

[29]

V. V. Ryzhikov and J.-P. Thouvenot, Disjointness, divisibility, and quasi-simplicity of measure-preserving actions,, (Russian) Funktsional. Anal. i Prilozhen., 40 (2006), 85.

[30]

J.-P. Thouvenot, Some properties and applications of joinings in ergodic theory,, Ergodic theory and its connections with harmonic analysis (Alexandria, (1993), 207.

[31]

K. Schmidt, Dispersing cocycles and mixing flows under functions,, Fund. Math., 173 (2002), 191. doi: 10.4064/fm173-2-6.

[32]

D. Witte, Rigidity of some translations on homogeneous spaces,, Invent. Math., 81 (1985), 1. doi: 10.1007/BF01388769.

[33]

J.-Ch. Yoccoz, Centralisateurs et conjugaison différentiable des difféomorphismes du cercle,, (French) [Centralizers and differentiable conjugacy of diffeomorphisms of the circle] Petits diviseurs en dimension $1$. Astérisque No. 231, (1995), 89.

[1]

Krzysztof Frączek, M. Lemańczyk, E. Lesigne. Mild mixing property for special flows under piecewise constant functions. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 691-710. doi: 10.3934/dcds.2007.19.691

[2]

Krzysztof Frączek, Mariusz Lemańczyk. A class of mixing special flows over two--dimensional rotations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4823-4829. doi: 10.3934/dcds.2015.35.4823

[3]

Rui Kuang, Xiangdong Ye. The return times set and mixing for measure preserving transformations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 817-827. doi: 10.3934/dcds.2007.18.817

[4]

Roland Gunesch, Anatole Katok. Construction of weakly mixing diffeomorphisms preserving measurable Riemannian metric and smooth measure. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 61-88. doi: 10.3934/dcds.2000.6.61

[5]

Dmitri Scheglov. Absence of mixing for smooth flows on genus two surfaces. Journal of Modern Dynamics, 2009, 3 (1) : 13-34. doi: 10.3934/jmd.2009.3.13

[6]

Przemysław Berk, Krzysztof Frączek. On special flows over IETs that are not isomorphic to their inverses. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 829-855. doi: 10.3934/dcds.2015.35.829

[7]

Anthony Quas, Terry Soo. Weak mixing suspension flows over shifts of finite type are universal. Journal of Modern Dynamics, 2012, 6 (4) : 427-449. doi: 10.3934/jmd.2012.6.427

[8]

Corinna Ulcigrai. Weak mixing for logarithmic flows over interval exchange transformations. Journal of Modern Dynamics, 2009, 3 (1) : 35-49. doi: 10.3934/jmd.2009.3.35

[9]

Luis Caffarelli, Fanghua Lin. Nonlocal heat flows preserving the L2 energy. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1/2) : 49-64. doi: 10.3934/dcds.2009.23.49

[10]

Giovanni Forni. The cohomological equation for area-preserving flows on compact surfaces. Electronic Research Announcements, 1995, 1: 114-123.

[11]

Bassam Fayad, A. Windsor. A dichotomy between discrete and continuous spectrum for a class of special flows over rotations. Journal of Modern Dynamics, 2007, 1 (1) : 107-122. doi: 10.3934/jmd.2007.1.107

[12]

V. Afraimovich, Jean-René Chazottes, Benoît Saussol. Pointwise dimensions for Poincaré recurrences associated with maps and special flows. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 263-280. doi: 10.3934/dcds.2003.9.263

[13]

Dmitry Kleinbock, Barak Weiss. Dirichlet's theorem on diophantine approximation and homogeneous flows. Journal of Modern Dynamics, 2008, 2 (1) : 43-62. doi: 10.3934/jmd.2008.2.43

[14]

Robert W. Ghrist. Flows on $S^3$ supporting all links as orbits. Electronic Research Announcements, 1995, 1: 91-97.

[15]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[16]

Bin Yu. Behavior $0$ nonsingular Morse Smale flows on $S^3$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 509-540. doi: 10.3934/dcds.2016.36.509

[17]

B. Campos, P. Vindel. Transversal intersections of invariant manifolds of NMS flows on $S^{3}$. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 41-56. doi: 10.3934/dcds.2012.32.41

[18]

Matilde Martínez, Shigenori Matsumoto, Alberto Verjovsky. Horocycle flows for laminations by hyperbolic Riemann surfaces and Hedlund's theorem. Journal of Modern Dynamics, 2016, 10: 113-134. doi: 10.3934/jmd.2016.10.113

[19]

Jian Li. Localization of mixing property via Furstenberg families. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 725-740. doi: 10.3934/dcds.2015.35.725

[20]

Makoto Mori. Higher order mixing property of piecewise linear transformations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 915-934. doi: 10.3934/dcds.2000.6.915

2016 Impact Factor: 0.706

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]