• Previous Article
    Linear cocycles over hyperbolic systems and criteria of conformality
  • JMD Home
  • This Issue
  • Next Article
    The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis
2010, 4(3): 443-451. doi: 10.3934/jmd.2010.4.443

The action of finite-state tree automorphisms on Bernoulli measures

1. 

Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, United States

Received  October 2009 Revised  July 2010 Published  October 2010

We describe how a finite-state automorphism of a regular rooted tree changes the Bernoulli measure on the boundary of the tree. It turns out that a finite-state automorphism of polynomial growth, as defined by S. Sidki, preserves a measure class of a Bernoulli measure, and we write down the explicit formula for its Radon-Nikodym derivative. On the other hand, the image of the Bernoulli measure under the action of a strongly connected finite-state automorphism is singular to the measure itself.
Citation: Rostyslav Kravchenko. The action of finite-state tree automorphisms on Bernoulli measures. Journal of Modern Dynamics, 2010, 4 (3) : 443-451. doi: 10.3934/jmd.2010.4.443
References:
[1]

L. Bartholdi and R. I. Grigorchuk, On the spectrum of Hecke type operators related to some fractal groups,, Tr. Mat. Inst. Steklova, 231 (2000), 5.

[2]

Laurent Bartholdi and Volodymyr Nekrashevych, Thurston equivalence of topological polynomials,, Aca Math., 197 (2006), 1. doi: doi:10.1007/s11511-006-0007-3.

[3]

Patrick Billingsley, "Ergodic Theory and Information,", Robert E. Krieger Publishing Co., (1978).

[4]

R. I. Grigorchuk, On the Milnor problem of group growth,, Dokl. Akad. Nauk SSSR, 271 (1983), 30.

[5]

R. I. Grigorchuk, V. V. Nekrashevich and V. I. Sushchanskiĭ, Automata, dynamical systems, and groups,, Tr. Mat. Inst. Steklova, 231 (2000), 134.

[6]

V. B. Kudryavtsev, S. V. Aleshin and A. S. Podkolzin, Vvedenie v teoriyu avtomatov,, (Russian) [Introduction to automata theory], (1985).

[7]

J. Milnor, Problem 5603,, Amer. Math. Monthly, 75 (1968), 685. doi: doi:10.2307/2313822.

[8]

Volodymyr Nekrashevych, "Self-similar Groups,", American Mathematical Society, (2005).

[9]

A. V. Ryabinin, Stochastic functions of finite automata,, in, (1986), 77.

[10]

Said Sidki, Automorphisms of one-rooted trees: Growth, circuit structure, and acyclicity,, J. Math. Sci. (New York), 100 (2000), 1925. doi: doi:10.1007/BF02677504.

[11]

V. A. Ufnarovskii, A growth criterion for graphs and algebras defined by words,, Math. Notes, 31 (1982), 238. doi: doi:10.1007/BF01145476.

[12]

Mariya Vorobets and Yaroslav Vorobets, On a free group of transformations defined by an automaton,, Geom. Dedicata, 124 (2007), 237. doi: doi:10.1007/s10711-006-9060-5.

show all references

References:
[1]

L. Bartholdi and R. I. Grigorchuk, On the spectrum of Hecke type operators related to some fractal groups,, Tr. Mat. Inst. Steklova, 231 (2000), 5.

[2]

Laurent Bartholdi and Volodymyr Nekrashevych, Thurston equivalence of topological polynomials,, Aca Math., 197 (2006), 1. doi: doi:10.1007/s11511-006-0007-3.

[3]

Patrick Billingsley, "Ergodic Theory and Information,", Robert E. Krieger Publishing Co., (1978).

[4]

R. I. Grigorchuk, On the Milnor problem of group growth,, Dokl. Akad. Nauk SSSR, 271 (1983), 30.

[5]

R. I. Grigorchuk, V. V. Nekrashevich and V. I. Sushchanskiĭ, Automata, dynamical systems, and groups,, Tr. Mat. Inst. Steklova, 231 (2000), 134.

[6]

V. B. Kudryavtsev, S. V. Aleshin and A. S. Podkolzin, Vvedenie v teoriyu avtomatov,, (Russian) [Introduction to automata theory], (1985).

[7]

J. Milnor, Problem 5603,, Amer. Math. Monthly, 75 (1968), 685. doi: doi:10.2307/2313822.

[8]

Volodymyr Nekrashevych, "Self-similar Groups,", American Mathematical Society, (2005).

[9]

A. V. Ryabinin, Stochastic functions of finite automata,, in, (1986), 77.

[10]

Said Sidki, Automorphisms of one-rooted trees: Growth, circuit structure, and acyclicity,, J. Math. Sci. (New York), 100 (2000), 1925. doi: doi:10.1007/BF02677504.

[11]

V. A. Ufnarovskii, A growth criterion for graphs and algebras defined by words,, Math. Notes, 31 (1982), 238. doi: doi:10.1007/BF01145476.

[12]

Mariya Vorobets and Yaroslav Vorobets, On a free group of transformations defined by an automaton,, Geom. Dedicata, 124 (2007), 237. doi: doi:10.1007/s10711-006-9060-5.

[1]

Bernard Host, Alejandro Maass, Servet Martínez. Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1423-1446. doi: 10.3934/dcds.2003.9.1423

[2]

Marcelo Sobottka. Right-permutative cellular automata on topological Markov chains. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1095-1109. doi: 10.3934/dcds.2008.20.1095

[3]

Samuel N. Cohen, Lukasz Szpruch. On Markovian solutions to Markov Chain BSDEs. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 257-269. doi: 10.3934/naco.2012.2.257

[4]

Brian Marcus and Selim Tuncel. Powers of positive polynomials and codings of Markov chains onto Bernoulli shifts. Electronic Research Announcements, 1999, 5: 91-101.

[5]

Jingzhi Tie, Qing Zhang. An optimal mean-reversion trading rule under a Markov chain model. Mathematical Control & Related Fields, 2016, 6 (3) : 467-488. doi: 10.3934/mcrf.2016012

[6]

Ralf Banisch, Carsten Hartmann. A sparse Markov chain approximation of LQ-type stochastic control problems. Mathematical Control & Related Fields, 2016, 6 (3) : 363-389. doi: 10.3934/mcrf.2016007

[7]

Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529

[8]

Aicha Batoul, Kenza Guenda, T. Aaron Gulliver. Some constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2016, 10 (4) : 683-694. doi: 10.3934/amc.2016034

[9]

Somphong Jitman, San Ling, Patanee Udomkavanich. Skew constacyclic codes over finite chain rings. Advances in Mathematics of Communications, 2012, 6 (1) : 39-63. doi: 10.3934/amc.2012.6.39

[10]

Kaïs Ammari, Denis Mercier, Virginie Régnier, Julie Valein. Spectral analysis and stabilization of a chain of serially connected Euler-Bernoulli beams and strings. Communications on Pure & Applied Analysis, 2012, 11 (2) : 785-807. doi: 10.3934/cpaa.2012.11.785

[11]

A. Mittal, N. Hemachandra. Learning algorithms for finite horizon constrained Markov decision processes. Journal of Industrial & Management Optimization, 2007, 3 (3) : 429-444. doi: 10.3934/jimo.2007.3.429

[12]

Luigi Ambrosio, Michele Miranda jr., Diego Pallara. Sets with finite perimeter in Wiener spaces, perimeter measure and boundary rectifiability. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 591-606. doi: 10.3934/dcds.2010.28.591

[13]

Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085

[14]

Piotr Gwiazda, Piotr Orlinski, Agnieszka Ulikowska. Finite range method of approximation for balance laws in measure spaces. Kinetic & Related Models, 2017, 10 (3) : 669-688. doi: 10.3934/krm.2017027

[15]

Richard Sharp. Conformal Markov systems, Patterson-Sullivan measure on limit sets and spectral triples. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2711-2727. doi: 10.3934/dcds.2016.36.2711

[16]

Lin Xu, Rongming Wang. Upper bounds for ruin probabilities in an autoregressive risk model with a Markov chain interest rate. Journal of Industrial & Management Optimization, 2006, 2 (2) : 165-175. doi: 10.3934/jimo.2006.2.165

[17]

Kazuhiko Kuraya, Hiroyuki Masuyama, Shoji Kasahara. Load distribution performance of super-node based peer-to-peer communication networks: A nonstationary Markov chain approach. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 593-610. doi: 10.3934/naco.2011.1.593

[18]

Olli-Pekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks & Heterogeneous Media, 2013, 8 (3) : 803-824. doi: 10.3934/nhm.2013.8.803

[19]

Badal Joshi. A detailed balanced reaction network is sufficient but not necessary for its Markov chain to be detailed balanced. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1077-1105. doi: 10.3934/dcdsb.2015.20.1077

[20]

Ralf Banisch, Carsten Hartmann. Addendum to "A sparse Markov chain approximation of LQ-type stochastic control problems". Mathematical Control & Related Fields, 2017, 7 (4) : 623-623. doi: 10.3934/mcrf.2017023

2017 Impact Factor: 0.425

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]