2010, 9(5): 1391-1397. doi: 10.3934/cpaa.2010.9.1391

Planar ACL-homeomorphisms : Critical points of their components

1. 

Dipartimento di Matematica e Appl. “R. Caccioppoli”, Via Cintia- Monte S.Angelo, 80126 Napoli, Italy, Italy, Italy

Received  September 2009 Revised  October 2009 Published  May 2010

We study planar homeomorphisms $f: \Omega\subset R^2 $ onto $\to \Omega' \subset R^2$, $f=(u,v)$, which are absolutely continuous on lines parallel to the axes (ACL) together with their inverse $f^{-1}$. The main result is that $u$ and $v$ have almost everywhere the same critical points. This generalizes a previous result ([6]) concerning bisobolev mappings. Moreover we construct an example of a planar ACL-homeomorphism not belonging to the Sobolev class $W_{l o c}^{1,1}$.
Citation: Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391
[1]

Światosław R. Gal, Jarek Kędra. On distortion in groups of homeomorphisms. Journal of Modern Dynamics, 2011, 5 (3) : 609-622. doi: 10.3934/jmd.2011.5.609

[2]

Sheldon Newhouse. Distortion estimates for planar diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1/2) : 345-412. doi: 10.3934/dcds.2008.22.345

[3]

B. S. Lee, Arif Rafiq. Strong convergence of an implicit iteration process for a finite family of Lipschitz $\phi -$uniformly pseudocontractive mappings in Banach spaces. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 287-293. doi: 10.3934/naco.2014.4.287

[4]

Richard Sharp. Distortion and entropy for automorphisms of free groups. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 347-363. doi: 10.3934/dcds.2010.26.347

[5]

Yifei Lou, Sung Ha Kang, Stefano Soatto, Andrea L. Bertozzi. Video stabilization of atmospheric turbulence distortion. Inverse Problems & Imaging, 2013, 7 (3) : 839-861. doi: 10.3934/ipi.2013.7.839

[6]

Jorge Groisman. Expansive homeomorphisms of the plane. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 213-239. doi: 10.3934/dcds.2011.29.213

[7]

Grant Cairns, Barry Jessup, Marcel Nicolau. Topologically transitive homeomorphisms of quotients of tori . Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 291-300. doi: 10.3934/dcds.1999.5.291

[8]

Salvador Addas-Zanata, Fábio A. Tal. Homeomorphisms of the annulus with a transitive lift II. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 651-668. doi: 10.3934/dcds.2011.31.651

[9]

Fengbo Hang, Fanghua Lin. Topology of Sobolev mappings IV. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1097-1124. doi: 10.3934/dcds.2005.13.1097

[10]

Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709

[11]

Deissy M. S. Castelblanco. Restrictions on rotation sets for commuting torus homeomorphisms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5257-5266. doi: 10.3934/dcds.2016030

[12]

Alfonso Artigue. Anomalous cw-expansive surface homeomorphisms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3511-3518. doi: 10.3934/dcds.2016.36.3511

[13]

Rafael Ortega. Trivial dynamics for a class of analytic homeomorphisms of the plane. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2/3, September) : 651-659. doi: 10.3934/dcdsb.2008.10.651

[14]

Panagiotes A. Voltairas, Antonios Charalambopoulos, Dimitrios I. Fotiadis, Lambros K. Michalis. A quasi-lumped model for the peripheral distortion of the arterial pulse. Mathematical Biosciences & Engineering, 2012, 9 (1) : 175-198. doi: 10.3934/mbe.2012.9.175

[15]

Valentin Afraimovich, Maurice Courbage, Lev Glebsky. Directional complexity and entropy for lift mappings. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3385-3401. doi: 10.3934/dcdsb.2015.20.3385

[16]

Huiyan Xue, Antonella Zanna. Generating functions and volume preserving mappings. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1229-1249. doi: 10.3934/dcds.2014.34.1229

[17]

Gernot Greschonig. Regularity of topological cocycles of a class of non-isometric minimal homeomorphisms. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4305-4321. doi: 10.3934/dcds.2013.33.4305

[18]

Abdelhamid Adouani, Habib Marzougui. Computation of rotation numbers for a class of PL-circle homeomorphisms. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3399-3419. doi: 10.3934/dcds.2012.32.3399

[19]

Mário Bessa, César M. Silva. Dense area-preserving homeomorphisms have zero Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2012, 32 (4) : 1231-1244. doi: 10.3934/dcds.2012.32.1231

[20]

Mickaël D. Chekroun, Jean Roux. Homeomorphisms group of normed vector space: Conjugacy problems and the Koopman operator. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3957-3980. doi: 10.3934/dcds.2013.33.3957

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

[Back to Top]