2010, 4(1): 207-209. doi: 10.3934/jmd.2010.4.207

Errata to "Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori" and "Uniqueness of large invariant measures for $\Zk$ actions with Cartan homotopy data"

1. 

Department of Mathematics, University of South Alabama, Mobile, AL 36688

2. 

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802

3. 

IMERL-Facultad de Ingeniería, Universidad de la República, ulio Herrera y Reissig 565, CC 30, 11300 Montevideo, Uruguay

Published  May 2010

N/A.
Citation: Boris Kalinin, Anatole Katok, Federico Rodriguez Hertz. Errata to "Measure rigidity beyond uniform hyperbolicity: Invariant measures for Cartan actions on tori" and "Uniqueness of large invariant measures for $\Zk$ actions with Cartan homotopy data". Journal of Modern Dynamics, 2010, 4 (1) : 207-209. doi: 10.3934/jmd.2010.4.207
[1]

Boris Kalinin, Anatole Katok. Measure rigidity beyond uniform hyperbolicity: invariant measures for cartan actions on tori. Journal of Modern Dynamics, 2007, 1 (1) : 123-146. doi: 10.3934/jmd.2007.1.123

[2]

Anatole Katok, Federico Rodriguez Hertz. Uniqueness of large invariant measures for $\mathbb{Z}^k$ actions with Cartan homotopy data. Journal of Modern Dynamics, 2007, 1 (2) : 287-300. doi: 10.3934/jmd.2007.1.287

[3]

Xiankun Ren. Periodic measures are dense in invariant measures for residually finite amenable group actions with specification. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1657-1667. doi: 10.3934/dcds.2018068

[4]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[5]

Manfred Einsiedler and Elon Lindenstrauss. Rigidity properties of \zd-actions on tori and solenoids. Electronic Research Announcements, 2003, 9: 99-110.

[6]

Oliver Jenkinson. Optimization and majorization of invariant measures. Electronic Research Announcements, 2007, 13: 1-12.

[7]

Siniša Slijepčević. Stability of invariant measures. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1345-1363. doi: 10.3934/dcds.2009.24.1345

[8]

Michihiro Hirayama. Periodic probability measures are dense in the set of invariant measures. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1185-1192. doi: 10.3934/dcds.2003.9.1185

[9]

Zhihong Xia. Hyperbolic invariant sets with positive measures. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 811-818. doi: 10.3934/dcds.2006.15.811

[10]

Marcus Pivato. Invariant measures for bipermutative cellular automata. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 723-736. doi: 10.3934/dcds.2005.12.723

[11]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[12]

Amir Mohammadi. Measures invariant under horospherical subgroups in positive characteristic. Journal of Modern Dynamics, 2011, 5 (2) : 237-254. doi: 10.3934/jmd.2011.5.237

[13]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[14]

Gamaliel Blé. External arguments and invariant measures for the quadratic family. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 241-260. doi: 10.3934/dcds.2004.11.241

[15]

Huichi Huang. Fourier coefficients of $\times p$-invariant measures. Journal of Modern Dynamics, 2017, 11: 551-562. doi: 10.3934/jmd.2017021

[16]

Francois Ledrappier and Omri Sarig. Invariant measures for the horocycle flow on periodic hyperbolic surfaces. Electronic Research Announcements, 2005, 11: 89-94.

[17]

Ivan Werner. Equilibrium states and invariant measures for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1285-1326. doi: 10.3934/dcds.2015.35.1285

[18]

Arno Berger, Roland Zweimüller. Invariant measures for general induced maps and towers. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3885-3901. doi: 10.3934/dcds.2013.33.3885

[19]

Stefano Galatolo, Mathieu Hoyrup, Cristóbal Rojas. Dynamics and abstract computability: Computing invariant measures. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 193-212. doi: 10.3934/dcds.2011.29.193

[20]

Jon Aaronson, Omri Sarig, Rita Solomyak. Tail-invariant measures for some suspension semiflows. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 725-735. doi: 10.3934/dcds.2002.8.725

2017 Impact Factor: 0.425

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

[Back to Top]