2010, 27(4): 1493-1509. doi: 10.3934/dcds.2010.27.1493

Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time

1. 

Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoy Karetniy 19, Moscow 127994, GSP-4, Russian Federation, Russian Federation

Received  September 2009 Revised  December 2009 Published  March 2010

We consider a non-autonomous reaction-diffusion system of two equations having in one equation a diffusion coefficient depending on time ($\delta =\delta (t)\geq 0,t\geq 0$) such that $\delta (t)\rightarrow 0$ as $t\rightarrow +\infty $. The corresponding Cauchy problem has global weak solutions, however these solutions are not necessarily unique. We also study the corresponding "limit'' autonomous system for $\delta =0.$ This reaction-diffusion system is partly dissipative. We construct the trajectory attractor A for the limit system. We prove that global weak solutions of the original non-autonomous system converge as $t\rightarrow +\infty $ to the set A in a weak sense. Consequently, A is also as the trajectory attractor of the original non-autonomous reaction-diffusions system.
Citation: Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time . Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493
[1]

Zhoude Shao. Existence and continuity of strong solutions of partly dissipative reaction diffusion systems. Conference Publications, 2011, 2011 (Special) : 1319-1328. doi: 10.3934/proc.2011.2011.1319

[2]

Annegret Glitzky. Energy estimates for electro-reaction-diffusion systems with partly fast kinetics. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 159-174. doi: 10.3934/dcds.2009.25.159

[3]

Boris Andreianov, Halima Labani. Preconditioning operators and $L^\infty$ attractor for a class of reaction-diffusion systems. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2179-2199. doi: 10.3934/cpaa.2012.11.2179

[4]

Abderrahim Azouani, Edriss S. Titi. Feedback control of nonlinear dissipative systems by finite determining parameters - A reaction-diffusion paradigm. Evolution Equations & Control Theory, 2014, 3 (4) : 579-594. doi: 10.3934/eect.2014.3.579

[5]

Laurent Desvillettes, Klemens Fellner. Entropy methods for reaction-diffusion systems. Conference Publications, 2007, 2007 (Special) : 304-312. doi: 10.3934/proc.2007.2007.304

[6]

A. Dall'Acqua. Positive solutions for a class of reaction-diffusion systems. Communications on Pure & Applied Analysis, 2003, 2 (1) : 65-76. doi: 10.3934/cpaa.2003.2.65

[7]

Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515

[8]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part II: Periodic boundary conditions. Communications on Pure & Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017

[9]

Dieter Bothe, Michel Pierre. The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 49-59. doi: 10.3934/dcdss.2012.5.49

[10]

Yuncheng You. Asymptotic dynamics of reversible cubic autocatalytic reaction-diffusion systems. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1415-1445. doi: 10.3934/cpaa.2011.10.1415

[11]

Rebecca McKay, Theodore Kolokolnikov, Paul Muir. Interface oscillations in reaction-diffusion systems above the Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2523-2543. doi: 10.3934/dcdsb.2012.17.2523

[12]

Wei Feng, Xin Lu. Global periodicity in a class of reaction-diffusion systems with time delays. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 69-78. doi: 10.3934/dcdsb.2003.3.69

[13]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Regular solutions and global attractors for reaction-diffusion systems without uniqueness. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1891-1906. doi: 10.3934/cpaa.2014.13.1891

[14]

Mihaela Negreanu, J. Ignacio Tello. On a comparison method to reaction-diffusion systems and its applications to chemotaxis. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2669-2688. doi: 10.3934/dcdsb.2013.18.2669

[15]

Yuncheng You. Random attractors and robustness for stochastic reversible reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 301-333. doi: 10.3934/dcds.2014.34.301

[16]

Monica Marras, Stella Vernier Piro. Blow-up phenomena in reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4001-4014. doi: 10.3934/dcds.2012.32.4001

[17]

Ana Carpio, Gema Duro. Explosive behavior in spatially discrete reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 693-711. doi: 10.3934/dcdsb.2009.12.693

[18]

Jorge Ferreira, Hermenegildo Borges de Oliveira. Parabolic reaction-diffusion systems with nonlocal coupled diffusivity terms. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2431-2453. doi: 10.3934/dcds.2017105

[19]

C. van der Mee, Stella Vernier Piro. Travelling waves for solid-gas reaction-diffusion systems. Conference Publications, 2003, 2003 (Special) : 872-879. doi: 10.3934/proc.2003.2003.872

[20]

Shin-Ichiro Ei, Toshio Ishimoto. Effect of boundary conditions on the dynamics of a pulse solution for reaction-diffusion systems. Networks & Heterogeneous Media, 2013, 8 (1) : 191-209. doi: 10.3934/nhm.2013.8.191

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]