2008, 2(3): 431-455. doi: 10.3934/jmd.2008.2.431

Maximal compact tori in the Hamiltonian group of 4-dimensional symplectic manifolds

1. 

Fields Institute, Toronto, M5T 3J1, Canada

Received  October 2007 Revised  February 2008 Published  April 2008

We prove that the group of Hamiltonian automorphisms of a symplectic $4$-manifold $(M,\omega)$, Ham$(M,\omega)$, contains only finitely many conjugacy classes of maximal compact tori with respect to the action of the full symplectomorphism group Symp$(M,\omega)$. We also consider the set of conjugacy classes of\/ $2$-tori in Ham$(M,\omega)$ with respect to Hamiltonian conjugation and show that its finiteness is equivalent to the finiteness of the symplectic mapping class group $\pi_{0}$(Symp$(M,\omega)$). Finally, we extend to rational and ruled manifolds a result of Kedra which asserts that if $(M,\omega)$ is a simply connected symplectic $4$-manifold with $b_{2}\geq 3$, and if $(\widetilde{M},\widetilde{\omega}_{\delta})$ denotes a symplectic blow-up of $(M,\omega)$ of small enough capacity $\delta$, then the rational cohomology algebra of the Hamiltonian group Ham($\widetilde{M},\widetilde{\omega}_{\delta})$ is not finitely generated. Our results are based on the fact that in a symplectic $4$-manifold endowed with any tamed almost structure $J$, exceptional classes of minimal symplectic area are $J$-indecomposable.
Citation: Martin Pinsonnault. Maximal compact tori in the Hamiltonian group of 4-dimensional symplectic manifolds. Journal of Modern Dynamics, 2008, 2 (3) : 431-455. doi: 10.3934/jmd.2008.2.431
[1]

Grzegorz Graff, Jerzy Jezierski. Minimization of the number of periodic points for smooth self-maps of closed simply-connected 4-manifolds. Conference Publications, 2011, 2011 (Special) : 523-532. doi: 10.3934/proc.2011.2011.523

[2]

Toshikazu Ito, Bruno Scárdua. Holomorphic foliations transverse to manifolds with corners. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 537-544. doi: 10.3934/dcds.2009.25.537

[3]

Benjamin Weiss. Entropy and actions of sofic groups. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3375-3383. doi: 10.3934/dcdsb.2015.20.3375

[4]

Eugen Mihailescu, Mariusz Urbański. Holomorphic maps for which the unstable manifolds depend on prehistories. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 443-450. doi: 10.3934/dcds.2003.9.443

[5]

Nir Avni. Spectral and mixing properties of actions of amenable groups. Electronic Research Announcements, 2005, 11: 57-63.

[6]

Michel Coornaert, Fabrice Krieger. Mean topological dimension for actions of discrete amenable groups. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 779-793. doi: 10.3934/dcds.2005.13.779

[7]

Nancy Guelman, Isabelle Liousse. Actions of Baumslag-Solitar groups on surfaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1945-1964. doi: 10.3934/dcds.2013.33.1945

[8]

Richard Miles, Michael Björklund. Entropy range problems and actions of locally normal groups. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 981-989. doi: 10.3934/dcds.2009.25.981

[9]

Andrei Török. Rigidity of partially hyperbolic actions of property (T) groups. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 193-208. doi: 10.3934/dcds.2003.9.193

[10]

Jan J. Dijkstra and Jan van Mill. Homeomorphism groups of manifolds and Erdos space. Electronic Research Announcements, 2004, 10: 29-38.

[11]

Pablo Angulo. Linking curves, sutured manifolds and the Ambrose conjecture for generic 3-manifolds. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 1-41. doi: 10.3934/dcds.2018001

[12]

Anatole Katok, Federico Rodriguez Hertz. Arithmeticity and topology of smooth actions of higher rank abelian groups. Journal of Modern Dynamics, 2016, 10: 135-172. doi: 10.3934/jmd.2016.10.135

[13]

Juan Alonso, Nancy Guelman, Juliana Xavier. Actions of solvable Baumslag-Solitar groups on surfaces with (pseudo)-Anosov elements. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1817-1827. doi: 10.3934/dcds.2015.35.1817

[14]

Alexander Gorodnik, Theron Hitchman, Ralf Spatzier. Regularity of conjugacies of algebraic actions of Zariski-dense groups. Journal of Modern Dynamics, 2008, 2 (3) : 509-540. doi: 10.3934/jmd.2008.2.509

[15]

Danijela Damjanovic and Anatole Katok. Local rigidity of actions of higher rank abelian groups and KAM method. Electronic Research Announcements, 2004, 10: 142-154.

[16]

Cristóbal Camarero, Carmen Martínez, Ramón Beivide. Identifying codes of degree 4 Cayley graphs over Abelian groups. Advances in Mathematics of Communications, 2015, 9 (2) : 129-148. doi: 10.3934/amc.2015.9.129

[17]

Dwayne Chambers, Erica Flapan, John D. O'Brien. Topological symmetry groups of $K_{4r+3}$. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1401-1411. doi: 10.3934/dcdss.2011.4.1401

[18]

Viktor L. Ginzburg and Basak Z. Gurel. On the construction of a $C^2$-counterexample to the Hamiltonian Seifert Conjecture in $\mathbb{R}^4$. Electronic Research Announcements, 2002, 8: 11-19.

[19]

Ricardo Miranda Martins, Marco Antonio Teixeira. On the similarity of Hamiltonian and reversible vector fields in 4D. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1257-1266. doi: 10.3934/cpaa.2011.10.1257

[20]

Fei Liu, Jaume Llibre, Xiang Zhang. Heteroclinic orbits for a class of Hamiltonian systems on Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1097-1111. doi: 10.3934/dcds.2011.29.1097

2017 Impact Factor: 0.425

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]