Communications on Pure and Applied Analysis (CPAA)


Pages: 465 - 465, Volume 7, Issue 2, March 2008      doi:10.3934/cpaa.2008.7.465

       Abstract        Full Text (81.5K)       Related Articles

Elias M. Guio - Departamento de Matemática, Universidade Federal do Espirito Santo,Vitória 29060-900 ES, Brazil (email)
Ricardo Sa Earp - Departamento de Matemática, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro 22453-900 RJ, Brazil (email)

Abstract: Referring to our paper Existence and non-existence for a mean curvature equation in hyperbolic space published in this journal, 4 (2005), 549-568, the assumptions are missing in the Statements: Theorem 3.1 and Theorem 3.2 ( cf. p. 552, lines 3-6). In the Statement of height estimates (Theorem 3.1 and Theorem 3.2), the assumptions on the prescribed mean curvature $H(x)$ are: $|H(x)|\leqs 1$ or $|H(x)|=a$ (constant). In the Statement of the main existence result (Theorem 3.3) the assumptions on the prescribed mean curvature $H(x)$ are the same: $|H(x)|\leqs 1$ or $|H(x)|=a$ (constant).

Keywords:  Dirichlet problem, mean curvature equation, hyperbolic space.
Mathematics Subject Classification:  35J25, 53A10.

Available Online: December 2007.