2008, 7(2): 293-315. doi: 10.3934/cpaa.2008.7.293

Higher--order implicit function theorems and degenerate nonlinear boundary-value problems

1. 

Department of Mathematics and Statistics, 123 Bachelor Hall, Miami University, Oxford, OH 45056, United States

2. 

System Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw, Poland, University of Podlasie in Siedlce, 3 Maja 54, 08-110 Siedlce, Poland

3. 

Control and Dynamical Systems 107-81, California Institute of Technology, Pasadena, CA 91125, United States

Received  December 2006 Revised  June 2007 Published  December 2007

The first part of this paper considers the problem of solving an equation of the form $F(x, y)=0$, for $y = \varphi (x)$ as a function of $x$, where $F: X \times Y \rightarrow Z$ is a smooth nonlinear mapping between Banach spaces. The focus is on the case in which the mapping $F$ is degenerate at some point $(x^*, y^*)$ with respect to $y$, i.e., when $F'_y (x^*, y^*)$, the derivative of $F$ with respect to $y$, is not invertible and, hence, the classical Implicit Function Theorem is not applicable. We present $p$th-order generalizations of the Implicit Function Theorem for this case. The second part of the paper uses these $p$th-order implicit function theorems to derive sufficient conditions for the existence of a solution of degenerate nonlinear boundary-value problems for second-order ordinary differential equations in cases close to resonance. The last part of the paper presents a modified perturbation method for solving degenerate second-order boundary value problems with a small parameter.The results of this paper are based on the constructions of $p$-regularity theory, whose basic concepts and main results are given in the paper Factor--analysis of nonlinear mappings: $p$--regularity theory by Tret'yakov and Marsden (Communications on Pure and Applied Analysis, 2 (2003), 425--445).
Citation: Olga A. Brezhneva, Alexey A. Tret’yakov, Jerrold E. Marsden. Higher--order implicit function theorems and degenerate nonlinear boundary-value problems . Communications on Pure & Applied Analysis, 2008, 7 (2) : 293-315. doi: 10.3934/cpaa.2008.7.293
[1]

John R. Graef, Lingju Kong, Bo Yang. Positive solutions of a nonlinear higher order boundary-value problem. Conference Publications, 2009, 2009 (Special) : 276-285. doi: 10.3934/proc.2009.2009.276

[2]

Hideo Ikeda, Koji Kondo, Hisashi Okamoto, Shoji Yotsutani. On the global branches of the solutions to a nonlocal boundary-value problem arising in Oseen's spiral flows . Communications on Pure & Applied Analysis, 2003, 2 (3) : 381-390. doi: 10.3934/cpaa.2003.2.381

[3]

Vicenţiu D. Rădulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $p(x)$-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

[4]

Liuyang Yuan, Zhongping Wan, Jingjing Zhang, Bin Sun. A filled function method for solving nonlinear complementarity problem. Journal of Industrial & Management Optimization, 2009, 5 (4) : 911-928. doi: 10.3934/jimo.2009.5.911

[5]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[6]

Pasquale Candito, Giovanni Molica Bisci. Multiple solutions for a Navier boundary value problem involving the $p$--biharmonic operator. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 741-751. doi: 10.3934/dcdss.2012.5.741

[7]

Agnid Banerjee, Nicola Garofalo. On the Dirichlet boundary value problem for the normalized $p$-laplacian evolution. Communications on Pure & Applied Analysis, 2015, 14 (1) : 1-21. doi: 10.3934/cpaa.2015.14.1

[8]

Dariusz Idczak. A global implicit function theorem and its applications to functional equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2549-2556. doi: 10.3934/dcdsb.2014.19.2549

[9]

Navnit Jha. Nonpolynomial spline finite difference scheme for nonlinear singuiar boundary value problems with singular perturbation and its mechanization. Conference Publications, 2013, 2013 (special) : 355-363. doi: 10.3934/proc.2013.2013.355

[10]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems & Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

[11]

Qiang Du, Manlin Li. On the stochastic immersed boundary method with an implicit interface formulation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 373-389. doi: 10.3934/dcdsb.2011.15.373

[12]

Vishal Vasan, Bernard Deconinck. Well-posedness of boundary-value problems for the linear Benjamin-Bona-Mahony equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3171-3188. doi: 10.3934/dcds.2013.33.3171

[13]

Eric R. Kaufmann. Existence and nonexistence of positive solutions for a nonlinear fractional boundary value problem. Conference Publications, 2009, 2009 (Special) : 416-423. doi: 10.3934/proc.2009.2009.416

[14]

Jeffrey W. Lyons. An application of an avery type fixed point theorem to a second order antiperiodic boundary value problem. Conference Publications, 2015, 2015 (special) : 775-782. doi: 10.3934/proc.2015.0775

[15]

Michael E. Filippakis, Nikolaos S. Papageorgiou. Existence and multiplicity of positive solutions for nonlinear boundary value problems driven by the scalar $p$-Laplacian. Communications on Pure & Applied Analysis, 2004, 3 (4) : 729-756. doi: 10.3934/cpaa.2004.3.729

[16]

Carlos E. Kenig, Tatiana Toro. On the free boundary regularity theorem of Alt and Caffarelli. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1/2) : 397-422. doi: 10.3934/dcds.2004.10.397

[17]

Yacheng Liu, Runzhang Xu. Potential well method for initial boundary value problem of the generalized double dispersion equations. Communications on Pure & Applied Analysis, 2008, 7 (1) : 63-81. doi: 10.3934/cpaa.2008.7.63

[18]

Xiao-Yu Zhang, Qing Fang. A sixth order numerical method for a class of nonlinear two-point boundary value problems. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 31-43. doi: 10.3934/naco.2012.2.31

[19]

Zhiyou Wu, Fusheng Bai, Guoquan Li, Yongjian Yang. A new auxiliary function method for systems of nonlinear equations. Journal of Industrial & Management Optimization, 2015, 11 (2) : 345-364. doi: 10.3934/jimo.2015.11.345

[20]

Yongjian Yang, Zhiyou Wu, Fusheng Bai. A filled function method for constrained nonlinear integer programming. Journal of Industrial & Management Optimization, 2008, 4 (2) : 353-362. doi: 10.3934/jimo.2008.4.353

2016 Impact Factor: 0.801

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

[Back to Top]