2004, 10(1/2): 387-396. doi: 10.3934/dcds.2004.10.387

Scattering theory for a particle coupled to a scalar field

1. 

Institute of Mathematics, University of Vienna, Boltzmanngasse 9, 1090 Vienna, Austria

2. 

Department of Mechanics and Mathematics, Moscow State University, Moscow 119899, Russian Federation

3. 

Zentrum Mathematik, TU München, 80290 München, Germany

Received  February 2002 Revised  April 2003 Published  October 2003

We establish soliton-like asymptotics for finite energy solutions to classical particle coupled to a scalar wave field. Any solution that goes to infinity as $t\to\infty$ converges to a sum of traveling wave and of outgoing free wave. The convergence holds in global energy norm. The proof uses a non-autonomous integral inequality method.
Citation: Valery Imaikin, Alexander Komech, Herbert Spohn. Scattering theory for a particle coupled to a scalar field . Discrete & Continuous Dynamical Systems - A, 2004, 10 (1/2) : 387-396. doi: 10.3934/dcds.2004.10.387
[1]

Anton Trushechkin. Microscopic and soliton-like solutions of the Boltzmann--Enskog and generalized Enskog equations for elastic and inelastic hard spheres. Kinetic & Related Models, 2014, 7 (4) : 755-778. doi: 10.3934/krm.2014.7.755

[2]

Conrad Bertrand Tabi, Alidou Mohamadou, Timoleon Crepin Kofane. Soliton-like excitation in a nonlinear model of DNA dynamics with viscosity. Mathematical Biosciences & Engineering, 2008, 5 (1) : 205-216. doi: 10.3934/mbe.2008.5.205

[3]

Eliot Fried. New insights into the classical mechanics of particle systems. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1469-1504. doi: 10.3934/dcds.2010.28.1469

[4]

Martin Frank, Thierry Goudon. On a generalized Boltzmann equation for non-classical particle transport. Kinetic & Related Models, 2010, 3 (3) : 395-407. doi: 10.3934/krm.2010.3.395

[5]

Lingbing He. On the global smooth solution to 2-D fluid/particle system. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 237-263. doi: 10.3934/dcds.2010.27.237

[6]

Charles Bordenave, David R. McDonald, Alexandre Proutière. A particle system in interaction with a rapidly varying environment: Mean field limits and applications. Networks & Heterogeneous Media, 2010, 5 (1) : 31-62. doi: 10.3934/nhm.2010.5.31

[7]

Ludovick Gagnon. Qualitative description of the particle trajectories for the N-solitons solution of the Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1489-1507. doi: 10.3934/dcds.2017061

[8]

Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. On small data scattering of Hartree equations with short-range interaction. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1809-1823. doi: 10.3934/cpaa.2016016

[9]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[10]

Dan-Andrei Geba, Kenji Nakanishi, Sarada G. Rajeev. Global well-posedness and scattering for Skyrme wave maps. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1923-1933. doi: 10.3934/cpaa.2012.11.1923

[11]

Kimitoshi Tsutaya. Scattering theory for the wave equation of a Hartree type in three space dimensions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2261-2281. doi: 10.3934/dcds.2014.34.2261

[12]

Daniel Bouche, Youngjoon Hong, Chang-Yeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1159-1181. doi: 10.3934/dcds.2017048

[13]

Justin Holmer, Maciej Zworski. Slow soliton interaction with delta impurities. Journal of Modern Dynamics, 2007, 1 (4) : 689-718. doi: 10.3934/jmd.2007.1.689

[14]

A. Carati. On the existence of scattering solutions for the Abraham-Lorentz-Dirac equation . Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 471-480. doi: 10.3934/dcdsb.2006.6.471

[15]

Xing Cheng, Ze Li, Lifeng Zhao. Scattering of solutions to the nonlinear Schrödinger equations with regular potentials. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 2999-3023. doi: 10.3934/dcds.2017129

[16]

Francesco Demontis, Cornelis Van der Mee. Novel formulation of inverse scattering and characterization of scattering data. Conference Publications, 2011, 2011 (Special) : 343-350. doi: 10.3934/proc.2011.2011.343

[17]

Baoquan Yuan, Xiaokui Zhao. Blowup of smooth solutions to the full compressible MHD system with compact density. Kinetic & Related Models, 2014, 7 (1) : 195-203. doi: 10.3934/krm.2014.7.195

[18]

Seung-Yeal Ha, Doron Levy. Particle, kinetic and fluid models for phototaxis. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 77-108. doi: 10.3934/dcdsb.2009.12.77

[19]

Nicolas Fournier. Particle approximation of some Landau equations. Kinetic & Related Models, 2009, 2 (3) : 451-464. doi: 10.3934/krm.2009.2.451

[20]

David Cowan. Rigid particle systems and their billiard models. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1/2) : 111-130. doi: 10.3934/dcds.2008.22.111

2016 Impact Factor: 1.099

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]