Evolution Equations and Control Theory (EECT)
 
Editors in Chief

Alain Haraux

haraux@ann.jussieu.fr

Université P.-M. Curie, Laboratoire J.-L. Lions, UMR 7598 CNRS, 4 Place Jussieu, BC 187, 75252 Paris 5ème, France

Dissipative dynamical systems, global behavior, stability, stabilization, recurrence, almost-periodicity, oscillation theory, and control theory.

Irena Lasiecka

il2v@virginia.edu

Department of Mathematics, University of Virginia, Charlottesville, VA 22903, USA

Control theory of evolutionary PDE’s, stabilizability, controllability, long-time behavior of nonlinear evolutions, and theory of attractors.

Editorial Board

Fatiha Alabau-Boussouira

alabau@univ-metz.fr

Université Paul Verlaine-Metz, LMAM, Ile du Saulcy, 57045 Metz Cedex 1, France

Controllability, stabilization of PDE and coupled systems, evolution equations, wave equation, viscoelasticity, and diffusive coupled systems.

Hedy Attouch

hedy.attouch@univ-montp2.fr

Institut Montpelliérain Alexander Grothendieck, UMR 5149 CNRS, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier cedex 5, France

Dynamical systems, optimization and game theory, numerical methods for compressed sensing, statistics, and optimal control, unilateral mechanics.

George Avalos

gavalos@math.unl.edu

Department of Mathematics University of Nebraska-Lincoln 323 Avery Hall Lincoln, Nebraska 68588, USA

Control theory of systems governed by PDE's, applicable analysis of evolution equations.

Jacek Banasiak

banasiak@aims.ac.za

Department of Mathematics and Applied Mathematics, University of Pretoria, 0028 Pretoria, South Africa

Semigroups of operators and evolution equations, applications to biosciences, kinetic models, dynamics on networks, asymptotic analysis of singularly perturbed problems.

Gang Bao

bao@math.msu.edu

Department of Mathematics, Zhejiang University, No. 38 Zheda Road, Hangzhou 310027, China

Inverse problems and optimal design for PDEs, Maxwell's equations, optics, and electro-magnetism.

Viorel Barbu

vbarbu41@gmail.com

Department of Mathematics, University "Al. I. Cuza", Iaşi, Romania

Control theory of PDE's, nonlinear control and stabilization, Hamilton Jacobi Equations, stabilization of stochastic PDE's.

Giuseppe Buttazzo

buttazzo@dm.unipi.it

Dipartimento di Matematica, Universita' di Pisa, Largo B. Pontecorvo, 5, 56127 Pisa, Italy

Calculus of variations, partial differential equations, optimization, optimal control.

Remi Carles

Remi.Carles@math.cnrs.fr

IMAG, Université de Montpellier, CC51, Place Eugène Bataillon, 34095 Montpellier, France

Nonlinear dispersive equations (Schrodinger, KdV, wave, kinetic equations), asymptotic behavior, singular limits, finite time blowup.

Thierry Cazenave

thierry.cazenave@upmc.fr

Université P.-M. Curie, Laboratoire J.-L. Lions, UMR 7598 CNRS, 4 Place Jussieu, BC 187, 75252 Paris 5ème, France

Nonlinear Schrödinger, heat, and wave equations, asymptotic behavior, finite time blowup.

Doina Cioranescu

cioran@ann.jussieu.fr

Universitè P.-M. Curie, Laboratoire J.-L. Lions, UMR 7598 CNRS, 4 Place Jussieu, BC 187, 75252 Paris 5ème, France

Evolution equations, fluid mechanics, and homogenization theory.

Ralph Chill

ralph.chill@tu-dresden.de

Fachrichtung Mathematik, TU Dresden, 01062 Dresden, Germany

Abstract evolution equations, linear semigroup theory, asymptotics of parabolic and hyperbolic pdes.

Alain Damlamian

damla@u-pec.fr

Université Paris-Est Créteil, Laboratoire d'Analyse et Mathématiques Appliquées (LAMA), UMR 8050 CNRS, 94010 Créteil Cedex, France

Non linear evolution equations, convex analysis, homogenization of partial differential equations and systems.

Giuseppe Da Prato

daprato@sns.it

Scuola Normale Superiore, 56126 Pisa, Italy

Stochastic analysis, Kolmogorov Equations, and Fokker-Planck Equations in Infinite dimensions.

Michel C. Delfour

delfour@CRM.UMontreal.ca

Centre de Recherches Mathématiques, Université de Montréal, Case Postale 6128, Succursale Centre-ville, Montréal (Québec), Canada, H3C 3J7

Shape optimal design, modelling and design of endoprotheses, distributed parameter systems, large flexible space structures, numerical methods in pdes.

Irene Fonseca

fonseca@andrew.cmu.edu

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA

Nonlinear partial differential equations, calculus of variations, mathematical aspects of materials science, mathematical aspects of imaging.

Jean Pierre Françoise

jpf@math.jussieu.fr

Université P.-M. Curie, Paris6, Laboratoire J.-L. Lions, UMR 7598 CNRS, 4 Place Jussieu, BC 187, 75252 Paris 5ème, France

Bifurcation theory, ODE’s, Hamiltonian dynamics, mathematics for life sciences.

Andrei Fursikov

fursikov@gmail.com

Department of Mechanics and Mathematics, Moscow State University, 119991 Moscow, Russia

Optimal control theory, controllability, stabilization, Navier-Stokes equations, and mathematical aspects of statistical hydrodynamics.

Vladimir Georgiev

georgiev@dm.unipi.it

Department of Mathematics, University of Pisa, Largo B. Pontecorvo, 5, 56127 Pisa, Italy

Nonlinear hyperbolic equations, Maxwell type systems, Dirac equations, solitary waves and their stability.

Y. Giga

labgiga@ms.u-tokyo.ac.jp

Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan

Nonlinear parabolic PDEs, interface evolution, fluid dynamics, materials sciences, self-similarity techniques.

Matthias Hieber

hieber@mathematik.tu-darmstadt.de

Fachbereich Mathematik, Schlossgartenstr. 7, TU Darmstadt, D-64289 Darmstadt, Germany

Equations of fluid dynamics, complex fluids, parabolic equations, maximal regularity, asymptotics, free boundary value problems.

Victor Isakov

victor.isakov@wichita.edu

Department Math. Stat. Phys. Wichita State University, 1845 Fairmount St., Wichita, KS 67260-0033, USA

Inverse problems in partial differential equations, Carleman estimates and their applications.

Mohamed Ali Jendoubi

ma.jendoubi@fsb.rnu.tn

Université de Carthage, Institut Préparatoire aux Études Scientifiques et Techniques, BP 51 La Marsa, Tunisia

Asymptotic behavior, rate of decay.

Jong Uhn Kim

kim@math.vt.edu

Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123, USA

Stochastic evolution equations and variational inequalities.

M. Vilmos Komornik

komornik@math.unistra.fr

Department of Mathematics, University of Strasbourg, 7 rue René Descartes, 67084 Strasbourg Cedex, France

Observability, controllability, stabilization, linear reversible evolutionary systems, non-harmonic analysis.

Suzanne Lenhart

lenhart@math.utk.edu

University of Tennessee, Department of Mathematics, 227 Ayres Hall, 1403 Circle Drive, Knoxville, TN 37996-1320, USA

Optimal control of ordinary and partial differential equations and discrete models, biological applications.

Alessandra Lunardi

alessandra.lunardi@unipr.it

Dipartimento di Matematica, Universita' di Parma, Parco Area delle Scienze 53/A, 43124 Parma, Italy

Linear elliptic and parabolic operators, parabolic equations, Kolmogorov Equations in finite and infinite dimensions.

Josef Málek

malek@karlin.mff.cuni.cz

Charles University in Prague, Faculty of Mathematics and Physics, Mathematical Institute, Sokolovská 83, 18675 Prague 8, Czech Republic

Continuum thermodynamics, implicit constitutive theory, multi-component materials, multi-phase flows, non-Newtonian fluids.

Bernadette Miara

miarabesiee@gmail.com

Paris-Est University, ESIEE, Cité Descartes, 2 Boulevard Blaise Pascal, 93160 Noisy-le-Grand Cedex, France

Modelling, homogenization, contact problems, shell theory, elastic or smart materials.

Juan J. Nieto

juanjose.nieto.roig@usc.es

University of Santiago de Compostela, Santiago de Compostela 15782, Spain

Nonlinear Partial Differential Equations, Fractional Differential Equations, Biomedical Applications.

Kenji Nishihara

kenji@waseda.jp

Faculty of Political Science and Economics, Waseda University, Tokyo 169-8050, Japan

Semilinear and quasilinear hyperbolic problems, conservation laws, asymptotics and nonlinear stability.

Vittorino Pata

vittorino.pata@polimi.it

Dipartimento di Matematica, Politecnico di Milano, Italy

Dissipative dynamical systems, equations with memory, theory of attractors, linear semigroups, stability.

Jan Pruss

jan.pruess@mathematik.uni-halle.de

Institut für Mathematik, Martin-Luther-Universität Halle-Wittenberg, D-60120 Halle, Germany

Free boundary and obstacle problems, parabolic systems, integro-differential equations.

Reinhard Racke

reinhard.racke@uni-konstanz.de

Department of Mathematics and Statistics, University of Konstanz, 78457 Konstanz, Germany

Thermoelasticity, wave equations, hyperbolic Navier-Stokes Equation.

Bopeng Rao

bopeng.rao@math.unistra.fr

Department of Mathematics, University of Strasbourg, 7 rue René Descartes, 67084 Strasbourg Cedex, France

Exact controllability, feedback stabilization, hybrid systems, quasilinear hyperbolic problems.

Genevieve Raugel

Genevieve.Raugel@math.u-psud.fr

Départment de Mathématiques, Faculté des Sciences d'Orsay, Université Paris-Sud 11, CNRS, F-91405 Orsay Cedex, France

Infinite-dimensional dynamical systems, fluid dynamics, attractors.

Michael Renardy

mrenardy@math.vt.edu

Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123, USA

Viscoelasticity, fluid mechanics.

Thomas I. Seidman

seidman@umbc.edu

Dept. Math/Stat, UMBC, 1000 Hilltop Circle, Baltimore, MD 21250, USA

PDEs (mostly parabolic) for evolution and control, inverse problems.

Daniel Tataru

tataru@math.berkeley.edu

Department of Mathematics, University of California, Berkeley, Berkeley CA 94720, USA

Nonlinear dispersive equations, harmonic analysis, microlocal analysis, general relativity.

Gunther Uhlmann

gunther@math.washington.edu

Department of Mathematics, 340 Rowland Hall, University of California, Irvine, Irvine, CA 92697-3875, USA; and Department of Mathematics, University of Washington, Box 354350, Seattle, WA 98195, USA

Inverse problems, partial differential equations, microlocal analysis, scattering theory, and math-ematical physics.

Vlad Vicol

vvicol@math.princeton.edu

Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, NJ, 08544, USA

Partial differential equations arising in fluid dynamics.

Pengfei Yao

pfyao@iss.ac.cn

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China

Control theory of partial differential equations, scattering problems, nonlinear elasticity.

Sergey Zelik

S.Zelik@surrey.ac.uk

Department of Mathematics, University of Surrey, Guildford GU2 7XH, Surrey, UK

Dissipative PDE’s, attractors and their dimensions, infinite energy solutions, interaction of dissipative solitons, space-time chaos.

Go to top