ISSN:
 1941-4889

eISSN:
 1941-4897

All Issues

Volume 10, 2018

Volume 9, 2017

Volume 8, 2016

Volume 7, 2015

Volume 6, 2014

Volume 5, 2013

Volume 4, 2012

Volume 3, 2011

Volume 2, 2010

Volume 1, 2009

The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal:

1. Lagrangian and Hamiltonian mechanics
2. Symplectic and Poisson geometry and their applications to mechanics
3. Geometric and optimal control theory
4. Geometric and variational integration
5. Geometry of stochastic systems
6. Geometric methods in dynamical systems
7. Continuum mechanics
8. Classical field theory
9. Fluid mechanics
10. Infinite-dimensional dynamical systems
11. Quantum mechanics and quantum information theory
12. Applications in physics, technology, engineering and the biological sciences

More detailed information on the subjects covered by the journal can be found by viewing the fields of research of the members of the editorial board.

Contributions to this journal are published free of charge.

  • AIMS is a member of COPE. All AIMS journals adhere to the publication ethics and malpractice policies outlined by COPE.
  • Publishes 4 issues a year in March, June, September and December.
  • Publishes online only.
  • Indexed in Science Citation Index-Expanded, CompuMath Citation Index, Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), INSPEC, Mathematical Reviews, MathSciNet, PASCAL/CNRS, Scopus, Web of Science and Zentralblatt MATH.
  • Archived in Portico and CLOCKSS.
  • JGM is a publication of the American Institute of Mathematical Sciences with the support of the Consejo Superior de Investigaciones Científicas (CSIC). All rights reserved.

Note: “Most Cited” is by Cross-Ref , and “Most Downloaded” is based on available data in the new website.

Select all articles

Export/Reference:

Generalized variational calculus for continuous and discrete mechanical systems
Viviana Alejandra Díaz and David Martín de Diego
2018, 10(4) : 373-410 doi: 10.3934/jgm.2018014 +[Abstract](215) +[HTML](93) +[PDF](644.95KB)
Abstract:

In this paper, we consider a generalization of variational calculus which allows us to consider in the same framework different cases of mechanical systems, for instance, Lagrangian mechanics, Hamiltonian mechanics, systems subjected to constraints, optimal control theory... This generalized variational calculus is based on two main notions: the tangent lift of curves and the notion of complete lift of a vector field. Both concepts are also adapted for the case of skew-symmetric algebroids, therefore, our formalism easily extends to the case of Lie algebroids and nonholonomic systems (see also [20]). Hence, this framework automatically includes reduced mechanical systems subjected or not to constraints. Finally, we show that our formalism can be used to tackle the case of discrete mechanics, including reduced systems, systems subjected to constraints and discrete optimal control theory.

On motions without falling of an inverted pendulum with dry friction
Ivan Polekhin
2018, 10(4) : 411-417 doi: 10.3934/jgm.2018015 +[Abstract](148) +[HTML](91) +[PDF](308.41KB)
Abstract:

An inverted planar pendulum with horizontally moving pivot point is considered. It is assumed that the law of motion of the pivot point is given and the pendulum is moving in the presence of dry friction. Sufficient conditions for the existence of solutions along which the pendulum never falls below the horizon are presented. The proof is based on the fact that solutions of the corresponding differential inclusion are right-unique and continuously depend on initial conditions, which is also shown in the paper.

Bohr-Sommerfeld-Heisenberg quantization of the mathematical pendulum
Richard Cushman and Jędrzej Śniatycki
2018, 10(4) : 419-443 doi: 10.3934/jgm.2018016 +[Abstract](182) +[HTML](98) +[PDF](1324.84KB)
Abstract:

In this paper we give the Bohr-Sommerfeld-Heisenberg quantization of the mathematical pendulum.

On some aspects of the geometry of non integrable distributions and applications
Miguel-C. Muñoz-Lecanda
2018, 10(4) : 445-465 doi: 10.3934/jgm.2018017 +[Abstract](186) +[HTML](99) +[PDF](436.46KB)
Abstract:

We consider a regular distribution \begin{document}$\mathcal{D}$\end{document} in a Riemannian manifold \begin{document}$(M, g)$\end{document}. The Levi-Civita connection on \begin{document}$(M, g)$\end{document} together with the orthogonal projection allow to endow the space of sections of \begin{document}$\mathcal{D}$\end{document} with a natural covariant derivative, the intrinsic connection. Hence we have two different covariant derivatives for sections of \begin{document}$\mathcal{D}$\end{document}, one directly with the connection in \begin{document}$(M, g)$\end{document} and the other one with this intrinsic connection. Their difference is the second fundamental form of \begin{document}$\mathcal{D}$\end{document} and we prove it is a significant tool to characterize the involutive and the totally geodesic distributions and to give a natural formulation of the equation of motion for mechanical systems with constraints. The two connections also give two different notions of curvature, curvature tensors and sectional curvatures, which are compared in this paper with the use of the second fundamental form.

A coordinate-free theory of virtual holonomic constraints
Luca Consolini, Alessandro Costalunga and Manfredi Maggiore
2018, 10(4) : 467-502 doi: 10.3934/jgm.2018018 +[Abstract](141) +[HTML](82) +[PDF](1107.26KB)
Abstract:

This paper presents a coordinate-free formulation of virtual holonomic constraints for underactuated Lagrangian control systems on Riemannian manifolds. It is shown that when a virtual constraint enjoys a regularity property, the constrained dynamics are described by an affine connection dynamical system. The affine connection of the constrained system has an elegant relationship to the Riemannian connection of the original Lagrangian control system. Necessary and sufficient conditions are given for the constrained dynamics to be Lagrangian. A key condition is that the affine connection of the constrained dynamics be metrizable. Basic results on metrizability of affine connections are first reviewed, then employed in three examples in order of increasing complexity. The last example is a double pendulum on a cart with two different actuator configurations. For this control system, a virtual constraint is employed which confines the second pendulum to within the upper half-plane.

Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics
Manuel de León, Juan Carlos Marrero and David Martín de Diego
2010, 2(2) : 159-198 doi: 10.3934/jgm.2010.2.159 +[Abstract](1190) +[PDF](475.8KB) Cited By(30)
Nonholonomic Hamilton-Jacobi equation and integrability
Tomoki Ohsawa and Anthony M. Bloch
2009, 1(4) : 461-481 doi: 10.3934/jgm.2009.1.461 +[Abstract](1006) +[PDF](789.5KB) Cited By(17)
On Euler's equation and 'EPDiff'
David Mumford and Peter W. Michor
2013, 5(3) : 319-344 doi: 10.3934/jgm.2013.5.319 +[Abstract](991) +[PDF](661.6KB) Cited By(16)
Semi-basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of variations
Ioan Bucataru and Matias F. Dahl
2009, 1(2) : 159-180 doi: 10.3934/jgm.2009.1.159 +[Abstract](1189) +[PDF](318.8KB) Cited By(16)
Integrable Euler top and nonholonomic Chaplygin ball
Andrey Tsiganov
2011, 3(3) : 337-362 doi: 10.3934/jgm.2011.3.337 +[Abstract](934) +[PDF](488.1KB) Cited By(15)
Right-invariant Sobolev metrics of fractional order on the diffeomorphism group of the circle
Joachim Escher and Boris Kolev
2014, 6(3) : 335-372 doi: 10.3934/jgm.2014.6.335 +[Abstract](962) +[PDF](587.5KB) Cited By(15)
Three-dimensional discrete systems of Hirota-Kimura type and deformed Lie-Poisson algebras
Andrew N. W. Hone and Matteo Petrera
2009, 1(1) : 55-85 doi: 10.3934/jgm.2009.1.55 +[Abstract](1015) +[PDF](494.1KB) Cited By(14)
Clebsch optimal control formulation in mechanics
François Gay-Balmaz and Tudor S. Ratiu
2011, 3(1) : 41-79 doi: 10.3934/jgm.2011.3.41 +[Abstract](950) +[PDF](597.2KB) Cited By(14)
$G$-Chaplygin systems with internal symmetries, truncation, and an (almost) symplectic view of Chaplygin's ball
Simon Hochgerner and Luis García-Naranjo
2009, 1(1) : 35-53 doi: 10.3934/jgm.2009.1.35 +[Abstract](1009) +[PDF](272.6KB) Cited By(13)
Geodesic Vlasov equations and their integrable moment closures
Darryl D. Holm and Cesare Tronci
2009, 1(2) : 181-208 doi: 10.3934/jgm.2009.1.181 +[Abstract](1009) +[PDF](360.8KB) Cited By(12)
Lagrange-d'alembert-poincaré equations by several stages
Hernán Cendra and Viviana A. Díaz
2018, 10(1) : 1-41 doi: 10.3934/jgm.2018001 +[Abstract](995) +[HTML](353) +[PDF](622.49KB) PDF Downloads(120)
Classical field theory on Lie algebroids: Multisymplectic formalism
Eduardo Martínez
2018, 10(1) : 93-138 doi: 10.3934/jgm.2018004 +[Abstract](999) +[HTML](425) +[PDF](708.21KB) PDF Downloads(117)
The projective Cartan-Klein geometry of the Helmholtz conditions
Carlos Durán and Diego Otero
2018, 10(1) : 69-92 doi: 10.3934/jgm.2018003 +[Abstract](868) +[HTML](317) +[PDF](437.43KB) PDF Downloads(89)
Second-order constrained variational problems on Lie algebroids: Applications to Optimal Control
Leonardo Colombo
2017, 9(1) : 1-45 doi: 10.3934/jgm.2017001 +[Abstract](812) +[HTML](11) +[PDF](680.5KB) PDF Downloads(79)
On some aspects of the discretization of the suslov problem
Fernando Jiménez and Jürgen Scheurle
2018, 10(1) : 43-68 doi: 10.3934/jgm.2018002 +[Abstract](808) +[HTML](299) +[PDF](1325.47KB) PDF Downloads(77)
A note on time-optimal paths on perturbed spheroid
Piotr Kopacz
2018, 10(2) : 139-172 doi: 10.3934/jgm.2018005 +[Abstract](779) +[HTML](257) +[PDF](3595.86KB) PDF Downloads(63)
Bohr-Sommerfeld-Heisenberg quantization of the mathematical pendulum
Richard Cushman and Jędrzej Śniatycki
2018, 10(4) : 419-443 doi: 10.3934/jgm.2018016 +[Abstract](182) +[HTML](98) +[PDF](1324.84KB) PDF Downloads(56)
On some aspects of the geometry of non integrable distributions and applications
Miguel-C. Muñoz-Lecanda
2018, 10(4) : 445-465 doi: 10.3934/jgm.2018017 +[Abstract](186) +[HTML](99) +[PDF](436.46KB) PDF Downloads(55)
Generalized variational calculus for continuous and discrete mechanical systems
Viviana Alejandra Díaz and David Martín de Diego
2018, 10(4) : 373-410 doi: 10.3934/jgm.2018014 +[Abstract](215) +[HTML](93) +[PDF](644.95KB) PDF Downloads(55)
The Euler-Poisson equations: An elementary approach to integrability conditions
Sasho Popov and Jean-Marie Strelcyn
2018, 10(3) : 293-329 doi: 10.3934/jgm.2018011 +[Abstract](416) +[HTML](246) +[PDF](564.97KB) PDF Downloads(53)

2017  Impact Factor: 0.561

Editors

Referees

Librarians

Email Alert

[Back to Top]