All Issues

Volume 11, 2018

Volume 10, 2017

Volume 9, 2016

Volume 8, 2015

Volume 7, 2014

Volume 6, 2013

Volume 5, 2012

Volume 4, 2011

Volume 3, 2010

Volume 2, 2009

Volume 1, 2008

Kinetic & Related Models

Editorial Board

Editors in Chief

Kazuo Aoki

Mathematics Division, National Center for Theoretical Sciences, National Taiwan University, Taipei 10617, Taiwan and Department of Mathematics, National Cheng Kung University, Tainan 70101, Taiwan

Molecular gas dynamics

Pierre Degond

Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

Kinetic theory, nonlinear PDE’s, numerical analysis, modeling

Tong Yang

City University of Hong Kong, Dept. Math., Kowloon, Hong Kong, China

Mathematical theories of conservation laws and kinetic equations

Associate Editors

Radjesvarane Alexandre

IRENAv, Research Institute French Naval Academy Ecole Navale 29240 BREST ARMEES, France

Kinetic equations, harmonic analysis, homogenization

Anton Arnold

Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstr. 8, A-1040 Vienna, Austria

Quantum models, kinetic theory

Guillaume Bal

University of Chicago, Department of Statistics, 5747 S. Ellis Avenue, Jones 120B, Chicago, IL 60637, USA

Kinetic models in random media, partial differential equations with random coefficients, inverse transport theory

Claude Bardos

University Paris 6, Lab JL Lions, F-75252, Paris, France

Kinetic theory, macroscopic limits in classical and quantum dynamic, euler and navier stokes equations

Alexander V. Bobylev

Keldysh Institute of Applied Mathematics, RAS, 125047 Moscow, Russia

Kinetic theory

Yann Brenier

Ecole polytechnique, Centre de mathématiques Laurent Schwartz, 91128 Palaiseau Cedex, France

Vlasov type equations optimal transportation methods

Alberto Bressan

Department of Mathematics, Penn State University, USA

Partial differential equations and control theory

Eric Carlen

Department of Mathematics, Hill center Rutgers University, 110 Frelinghuysen Rd. Piscataway NJ 08854, USA

Probabilistic models, functional inequalities and anlytic methods in kinetic theory

José Antonio Carrillo

Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom

Kinetic and related nonlinear PDEs: asymptotics, modelling and numerics

Hua Chen

School of Mathematics and Statistics Wuhan University, Wuhan 430072, China

Partial differential equations

Laurent Desvillettes

Université Paris Diderot, IMJ-PRG, 8 place Aurélie Nemours 75013 Paris, France

Applied PDE and numerical analysis, kinetic theory

Miguel Escobedo

Departamento de Matemáticas Universidad del País Vasco (UPV/EHU) Apartado 644, Bilbao 48080, Spain

Nonlinear pde`s- Asymptotic behaviour-Singularities

Raffaele Esposito

M&MOCS - International Research Center on Mathematics and Mechanics of Complex Systems - Università dell’Aquila Palazzo Caetani, 04012 Cisterna di Latina, Italy

Kinetic theory, hydrodynamical limits, particle systems

Irene M. Gamba

Department of Mathematics and Institute for Computational Engineering and Sciences, The University of Texas at Austin, 78712 Austin TX, USA

Nonlinear kinetic theory and PDE's, analysis and numerical methods

Francois Golse

Ecole polytechnique, Centre de mathématiques Laurent Schwartz, 91128 Palaiseau cedex, France

Mathematical analysis of kinetic models macroscopic limits for particle systems

Yan Guo

Division of Applied Mathematics, Brown University, Providence, RI 02912, USA

Kinetic theory

Seung-Yeal Ha

Department of Mathematical Sciences, Seoul National University, Seoul, 151-747, Korea

Hyperbolic conservation laws, kinetic theory, modeling

Feimin Huang

Academy of Mathematics and System Sciences, Academia Sinica, Beijing 100190, China

Hyperbolic conservation laws and viscous conservation laws

Pierre-Emmanuel Jabin

CSCAMM and Department of Mathematics, University of Maryland, College Park, MD 20742, USA

Kinetic equations, systems of particles, transport and advection equations

Shi Jin

Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China

Numerical methods for hyperbolic systems and kinetic equations, computational high frequency waves

Ansgar Jüngel

Institute for Analysis and Scientific Computing, Vienna University of Technology Wiedner Hauptstr. 8-10, 1040 Wien, Austria

Kinetic models and diffusive limits, semiconductor and finance applications, numerics

Shuichi Kawashima

Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan

Partial differential equations

Axel Klar

TU Kaiserslautern, Erwin Schrödingerstr., 67663 Kaiserslautern, Germany

Numerical methods for transport equations, network models

C. David Levermore

Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742-2431, USA

Boltzmann equations, transport equations, transition regime models

Pierre-Louis Lions

I.F.D. Institut Finance Dauphine, Universite Paris Dauphine, Place du Marechal de Lattre De Tassigny 75775 Paris cedex 16, France

Applied mathematics, nonlinear partial differential equations

Chun Liu

Department of Mathematics Penn State University, University Park, PA 16802, USA

Complex fluids, multiscale modeling

Tao Luo

Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong, China

Nonlinear partial differential equations and fluid dynamics

Peter Markowich

Applied Mathematics, University of Cambridge, DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, United Kingdom and Mathematics, University of Vienna, Austria

Kinetic equations in semiconductors, nanotechnology and quantum physics

Yoshinori Morimoto

Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan

Partial differential equations, statistical mechanics

Barbara Niethammer

Institut fuer Angewandte Mathematik, Endenicher Allee 60, 53115 Bonn, Germany

Kinetic models in materials science, coagulation-fragmentaion equations

Shinya Nishibata

Tokyo Institute of Technology Department of Mathematical and Computing Sciences Graduate School of Information Science and Engineering 2-12-1-W8-32, O-okayama, Meguro-ku Tokyo 152-8552, Japan

Hyperbolic-elliptic systems of PDE, fluid equations, discrete Boltzmann equations

Anne Nouri

Laboratoire d'Analyse, Topologie et robabilités,Université d'Aix-Marseille I, 39 rue F. Joliot Curie, 13453 Marseille Cedex 13, France

Kinetic theory

Lorenzo Pareschi

Department of Mathematics, University of Ferrara Via Machiavelli 35, 44100 Ferrara, Italy

Kinetic equations and nonlinear PDEs, numerical analysis

Paola Pietra

Istituto di Matematica Applicata, e Tecnologie Informatiche (IMATI) CNR, via Ferrata 1, 27100 Pavia, Italy

Numerical methods for PDE's, semiconductor applications

Mario Pulvirenti

Department of Mathematics, University of Rome-La Sapienza, Italy

Scaling limits in classical and quantum kinetic theory, in compressible flows

Laure Saint-Raymond

Département de Mathématiques et Applications Ecole Normale Supérieure 45 rue d'Ulm, 75230 Paris Cedex 05, France

Kinetic equations, hydrodynamic limits fluid mechanics singular perturbations

Giuseppe Toscani

Dipartimento di Matematica "F. Casorati", Università di Pavia, Via Ferrata 1, 27100 PAVIA, Italy

Kinetic models in socio-economic and environmental sciences, nonlinear PDE's

Nicolas Vauchelet

LAGA, Université Paris 13, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France

Kinetic and related PDEs applied to biology

Dehua Wang

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA.

Partial differential equations and applied mathematics

Bernt Wennberg

Mathematical Sciences, Chalmers University of Technology and Göteborg University address: Chalmers University of Technology, SE41296 Göteborg, Sweden

Nonlinear kinetic equations, mathematical modelling

Zhouping Xin

The Institute of Mathematical Sciences, The Chinese University of Hong Kong, Room 701, Acedemic Building mailto: 1, Shatin, New Territories, Hong Kong, China

Nonlinear PDEs, applied mathematics, numerical analysis

Shih-Hsien Yu

Department of Mathematics, National University of Singapore, 2, Science Drive 2, Singapore 117543, Singapore

Boltzmann equation, viscous conservation laws, finite difference method

Huijiang Zhao

School of Mathematics and Statistics Wuhan University, Wuhan 430072, China

Conservation laws, Boltzmann equation

Changjiang Zhu

School of Mathematics and Statistics Central China Normal University, Wuhan 430079, China

Hyperbolic systems of conservation laws

In memoriam: Seiji Ukai, co-founding editor

2017  Impact Factor: 1.219




Email Alert

[Back to Top]