ISSN:

1930-8337

eISSN:

1930-8345

## Inverse Problems & Imaging

January 2018 , Volume 12 , Issue 1

Select all articles

Export/Reference:

*+*[Abstract](403)

*+*[HTML](217)

*+*[PDF](538.76KB)

**Abstract:**

We consider a magnetic Schrödinger operator

*+*[Abstract](833)

*+*[HTML](293)

*+*[PDF](4980.26KB)

**Abstract:**

Region-of-Interest (ROI) tomography aims at reconstructing a region of interest *non*-*trucated* cone-beam transform of smooth density functions

*+*[Abstract](351)

*+*[HTML](229)

*+*[PDF](543.55KB)

**Abstract:**

Inverse transport theory concerns the reconstruction of the absorption and scattering coefficients in a transport equation from knowledge of the albedo operator, which models all possible boundary measurements. Uniqueness and stability results are well known and are typically obtained for errors of the albedo operator measured in the

This paper revisit such stability estimates by introducing a more forgiving metric on the measurements errors, namely the

We also consider the effect of errors, still measured in the

*+*[Abstract](528)

*+*[HTML](263)

*+*[PDF](583.43KB)

**Abstract:**

We detect an inclusion with infinite conductivity from boundary measurements represented by the Dirichlet-to-Neumann map for the conductivity equation. We use both the enclosure method and the probe method. We use the enclosure method to prove partial results when the underlying equation is the quasilinear

*+*[Abstract](303)

*+*[HTML](226)

*+*[PDF](1660.87KB)

**Abstract:**

We investigate in this paper the diffusion magnetic resonance imaging (MRI) in deformable organs such as the living heart. The difficulty comes from the hight sensitivity of diffusion measurement to tissue motion. Commonly in literature, the diffusion MRI signal is given by the complex magnetization of water molecules described by the Bloch-Torrey equation. When dealing with deformable organs, the Bloch-Torrey equation is no longer valid. Our main contribution is then to introduce a new mathematical description of the Bloch-Torrey equation in deforming media. In particular, some numerical simulations are presented to quantify the influence of cardiac motion on the estimation of diffusion. Moreover, based on a scaling argument and on an asymptotic model for the complex magnetization, we derive a new apparent diffusion coefficient formula. Finally, some numerical experiments illustrate the potential of this new version which gives a better reconstruction of the diffusion than using the classical one.

*+*[Abstract](334)

*+*[HTML](291)

*+*[PDF](444.47KB)

**Abstract:**

In this paper, we consider the block orthogonal matching pursuit (BOMP) algorithm and the block orthogonal multi-matching pursuit (BOMMP) algorithm respectively to recover block sparse signals from an underdetermined system of linear equations. We first introduce the notion of block restricted orthogonality constant (ROC), which is a generalization of the standard restricted orthogonality constant, and establish respectively the sufficient conditions in terms of the block RIC and ROC to ensure the exact and stable recovery of any block sparse signals in both noiseless and noisy cases through the BOMP and BOMMP algorithm. We finally show that the sufficient condition on the block RIC and ROC is sharp for the BOMP algorithm.

*+*[Abstract](606)

*+*[HTML](285)

*+*[PDF](5194.5KB)

**Abstract:**

We present a reconstruction method for estimating the pulse-wave velocity in the brain from dynamic MRI data. The method is based on solving an inverse problem involving an advection equation. A space-time discretization is used and the resulting largescale inverse problem is solved using an accelerated Landweber type gradient method incorporating sparsity constraints and utilizing a wavelet embedding. Numerical example problems and a real-world data test show a significant improvement over the results obtained by the previously used method.

*+*[Abstract](473)

*+*[HTML](284)

*+*[PDF](420.82KB)

**Abstract:**

Some scattering problems for the multidimensional biharmonic operator are studied. The operator is perturbed by first and zero order perturbations, which maybe complex-valued and singular. We show that the solutions to direct scattering problem satisfy a Lippmann-Schwinger equation, and that this integral equation has a unique solution in the weighted Sobolev space

*+*[Abstract](273)

*+*[HTML](217)

*+*[PDF](353.3KB)

**Abstract:**

We consider restricted light ray transforms arising from an inverse problem of finding cosmic strings. We construct a relative left parametrix for the transform on two tensors, which recovers the space-like and some light-like singularities of the two tensor.

*+*[Abstract](586)

*+*[HTML](325)

*+*[PDF](779.26KB)

**Abstract:**

Digital tomographic image reconstruction uses multiple x-ray projections obtained along a range of different incident angles to reconstruct a 3D representation of an object. For example, computed tomography (CT) generally refers to the situation when a full set of angles are used (e.g., 360 degrees) while tomosynthesis refers to the case when only a limited (e.g., 30 degrees) angular range is used. In either case, most existing reconstruction algorithms assume that the x-ray source is monoenergetic. This results in a simplified linear forward model, which is easy to solve but can result in artifacts in the reconstructed images. It has been shown that these artifacts can be reduced by using a more accurate polyenergetic assumption for the x-ray source, but the polyenergetic model requires solving a large-scale nonlinear inverse problem. In addition to reducing artifacts, a full polyenergetic model can be used to extract additional information about the materials of the object; that is, to provide a mechanism for quantitative imaging. In this paper, we develop an approach to solve the nonlinear image reconstruction problem by incorporating total variation (TV) regularization. The corresponding optimization problem is then solved by using a scaled gradient descent method. The proposed algorithm is based on KKT conditions and Nesterov's acceleration strategy. Experimental results on reconstructed polyenergetic image data illustrate the effectiveness of this proposed approach.

2016 Impact Factor: 1.094

## Readers

## Authors

## Editors

## Referees

## Librarians

## Email Alert

Add your name and e-mail address to receive news of forthcoming issues of this journal:

[Back to Top]