ISSN:
 1531-3492

eISSN:
 1553-524X

All Issues

Volume 24, 2019

Volume 23, 2018

Volume 22, 2017

Volume 21, 2016

Volume 20, 2015

Volume 19, 2014

Volume 18, 2013

Volume 17, 2012

Volume 16, 2011

Volume 15, 2011

Volume 14, 2010

Volume 13, 2010

Volume 12, 2009

Volume 11, 2009

Volume 10, 2008

Volume 9, 2008

Volume 8, 2007

Volume 7, 2007

Volume 6, 2006

Volume 5, 2005

Volume 4, 2004

Volume 3, 2003

Volume 2, 2002

Volume 1, 2001

Discrete & Continuous Dynamical Systems - B

February 2002 , Volume 2 , Issue 1

Select all articles

Export/Reference:

Convergence of a boundary integral method for 3-D water waves
Thomas Y. Hou and Pingwen Zhang
2002, 2(1): 1-34 doi: 10.3934/dcdsb.2002.2.1 +[Abstract](978) +[PDF](306.2KB)
Simulation of stationary chemical patterns and waves in ionic reactions
Arno F. Münster
2002, 2(1): 35-46 doi: 10.3934/dcdsb.2002.2.35 +[Abstract](1013) +[PDF](252.3KB)
Asymptotic behavior of solutions of time-delayed Burgers' equation
Weijiu Liu
2002, 2(1): 47-56 doi: 10.3934/dcdsb.2002.2.47 +[Abstract](1117) +[PDF](153.8KB)
Lyapunov-based transfer between elliptic Keplerian orbits
Dong Eui Chang, David F. Chichka and Jerrold E. Marsden
2002, 2(1): 57-67 doi: 10.3934/dcdsb.2002.2.57 +[Abstract](890) +[PDF](212.7KB)
Transmission boundary conditions in a model-kinetic decomposition
C. Bourdarias, M. Gisclon and A. Omrane
2002, 2(1): 69-94 doi: 10.3934/dcdsb.2002.2.69 +[Abstract](927) +[PDF](254.9KB)
Finite element analysis and approximations of phase-lock equations of superconductivity
Mei-Qin Zhan
2002, 2(1): 95-108 doi: 10.3934/dcdsb.2002.2.95 +[Abstract](897) +[PDF](211.9KB)
The nonlinear Schrödinger equation as a resonant normal form
Dario Bambusi, A. Carati and A. Ponno
2002, 2(1): 109-128 doi: 10.3934/dcdsb.2002.2.109 +[Abstract](1064) +[PDF](249.8KB)
Identification of modulated rotating waves in pattern-forming systems with O(2) symmetry
A. Palacios
2002, 2(1): 129-147 doi: 10.3934/dcdsb.2002.2.129 +[Abstract](904) +[PDF](390.2KB)

2017  Impact Factor: 0.972

Editors

Referees

Librarians

Email Alert

[Back to Top]