All Issues

Volume 38, 2018

Volume 37, 2017

Volume 36, 2016

Volume 35, 2015

Volume 34, 2014

Volume 33, 2013

Volume 32, 2012

Volume 31, 2011

Volume 30, 2011

Volume 29, 2011

Volume 28, 2010

Volume 27, 2010

Volume 26, 2010

Volume 25, 2009

Volume 24, 2009

Volume 23, 2009

Volume 22, 2008

Volume 21, 2008

Volume 20, 2008

Volume 19, 2007

Volume 18, 2007

Volume 17, 2007

Volume 16, 2006

Volume 15, 2006

Volume 14, 2006

Volume 13, 2005

Volume 12, 2005

Volume 11, 2004

Volume 10, 2004

Volume 9, 2003

Volume 8, 2002

Volume 7, 2001

Volume 6, 2000

Volume 5, 1999

Volume 4, 1998

Volume 3, 1997

Volume 2, 1996

Volume 1, 1995

Discrete & Continuous Dynamical Systems - A

2016 , Volume 36 , Issue 3

Select all articles


An improved Hardy inequality for a nonlocal operator
Boumediene Abdellaoui and  Fethi Mahmoudi
2016, 36(3): 1143-1157 doi: 10.3934/dcds.2016.36.1143 +[Abstract](120) +[PDF](456.7KB)
Let $0 < s < 1$ and $1< p < 2$ be such that $ps < N$ and let $\Omega$ be a bounded domain containing the origin. In this paper we prove the following improved Hardy inequality:
    Given $1 \le q < p$, there exists a positive constant $C\equiv C(\Omega, q, N, s)$ such that $$ \int\limits_{\mathbb{R}^N}\int\limits_{\mathbb{R}^N} \, \frac{|u(x)-u(y)|^{p}}{|x-y|^{N+ps}}\,dx\,dy - \Lambda_{N,p,s} \int\limits_{\mathbb{R}^N} \frac{|u(x)|^p}{|x|^{ps}}\,dx$$$$\geq C \int\limits_{\Omega}\int\limits_{\Omega}\frac{|u(x)-u(y)|^p}{|x-y|^{N+qs}}dxdy $$ for all $u \in \mathcal{C}_0^\infty({\Omega})$. Here $\Lambda_{N,p,s}$ is the optimal constant in the Hardy inequality (1.1).
Pure discrete spectrum for a class of one-dimensional substitution tiling systems
Marcy Barge
2016, 36(3): 1159-1173 doi: 10.3934/dcds.2016.36.1159 +[Abstract](44) +[PDF](422.0KB)
We prove that if a primitive and non-periodic substitution is injective on initial letters, constant on final letters, and has Pisot inflation, then the $\mathbb{R}$-action on the corresponding tiling space has pure discrete spectrum. As a consequence, all $\beta$-substitutions for $\beta$ a Pisot simple Parry number have tiling dynamical systems with pure discrete spectrum, as do the Pisot systems arising, for example, from substitutions associated with the Jacobi-Perron and Brun continued fraction algorithms.
Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up
Vincent Calvez and  Thomas O. Gallouët
2016, 36(3): 1175-1208 doi: 10.3934/dcds.2016.36.1175 +[Abstract](51) +[PDF](1638.1KB)
We investigate a particle system which is a discrete and deterministic approximation of the one-dimensional Keller-Segel equation with a logarithmic potential. The particle system is derived from the gradient flow of the homogeneous free energy written in Lagrangian coordinates. We focus on the description of the blow-up of the particle system, namely: the number of particles involved in the first aggregate, and the limiting profile of the rescaled system. We exhibit basins of stability for which the number of particles is critical, and we prove a weak rigidity result concerning the rescaled dynamics. This work is complemented with a detailed analysis of the case where only three particles interact.
Nonlocal-interaction equations on uniformly prox-regular sets
José A. Carrillo , Dejan Slepčev and  Lijiang Wu
2016, 36(3): 1209-1247 doi: 10.3934/dcds.2016.36.1209 +[Abstract](54) +[PDF](647.9KB)
We study the well-posedness of a class of nonlocal-interaction equations on general domains $\Omega\subset \mathbb{R}^{d}$, including nonconvex ones. We show that under mild assumptions on the regularity of domains (uniform prox-regularity), for $\lambda$-geodesically convex interaction and external potentials, the nonlocal-interaction equations have unique weak measure solutions. Moreover, we show quantitative estimates on the stability of solutions which quantify the interplay of the geometry of the domain and the convexity of the energy. We use these results to investigate on which domains and for which potentials the solutions aggregate to a single point as time goes to infinity. Our approach is based on the theory of gradient flows in spaces of probability measures.
The $\beta$-transformation with a hole
Lyndsey Clark
2016, 36(3): 1249-1269 doi: 10.3934/dcds.2016.36.1249 +[Abstract](41) +[PDF](578.7KB)
This paper extends those of Glendinning and Sidorov [3] and of Hare and Sidorov [6] from the case of the doubling map to the more general $\beta$-transformation. Let $\beta \in (1,2)$ and consider the $\beta$-transformation $T_\beta(x)=\beta x$ mod 1. Let $\mathcal{J}_\beta(a,b) := \{ x \in (0,1) : T_\beta^n(x) \notin (a,b) \text{ for all } n \geq 0 \}$. An integer $n$ is bad for $(a,b)$ if every periodic point of period $n$ for $T_\beta$ intersects $(a,b)$. Denote the set of all bad $n$ for $(a,b)$ by $B_\beta(a,b)$. In this paper we completely describe the following sets: \begin{align*} D_0(\beta) &= \{ (a,b) \in [0,1)^2 : \mathcal{J}(a,b) \neq \emptyset \}, \\ D_1(\beta) &= \{ (a,b) \in [0,1)^2 : \mathcal{J}(a,b) \text{ is uncountable} \}, \\ D_2(\beta) &= \{ (a,b) \in [0,1)^2 : B_\beta(a,b) \text{ is finite} \}. \end{align*}
Rigidity of Hamenstädt metrics of Anosov flows
Yong Fang
2016, 36(3): 1271-1278 doi: 10.3934/dcds.2016.36.1271 +[Abstract](50) +[PDF](358.0KB)
Let $\varphi$ be a $C^\infty$ transversely symplectic topologically mixing Anosov flow such that $dim E^{su}\geq 2$. We suppose that the weak distributions of $\varphi$ are $C^1$. If the length Hamenstädt metrics of $\varphi$ are sub-Riemannian then we prove that the weak distributions of $\varphi$ are necessarily $C^\infty$. Combined with our previous rigidity result in [5] we deduce the classification of such Anosov flows with $C^1$ weak distributions provided that the length Hamenstädt metrics are sub-Riemannian.
Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions
Ciprian G. Gal and  Mahamadi Warma
2016, 36(3): 1279-1319 doi: 10.3934/dcds.2016.36.1279 +[Abstract](111) +[PDF](692.1KB)
We investigate the long term behavior in terms of finite dimensional global attractors and (global) asymptotic stabilization to steady states, as time goes to infinity, of solutions to a non-local semilinear reaction-diffusion equation associated with the fractional Laplace operator on non-smooth domains subject to Dirichlet, fractional Neumann and Robin boundary conditions.
Wandering continua for rational maps
Guizhen Cui and  Yan Gao
2016, 36(3): 1321-1329 doi: 10.3934/dcds.2016.36.1321 +[Abstract](51) +[PDF](194.7KB)
We prove that a Lattès map admits an always full wandering continuum if and only if it is flexible. The full wandering continuum is a line segment in a bi-infinite or one-side-infinite geodesic under the flat metric.
Asymptotic stability of non-monotone traveling waves for time-delayed nonlocal dispersion equations
Rui Huang , Ming Mei , Kaijun Zhang and  Qifeng Zhang
2016, 36(3): 1331-1353 doi: 10.3934/dcds.2016.36.1331 +[Abstract](56) +[PDF](483.3KB)
This paper is concerned with the stability of non-monotone traveling waves to a nonlocal dispersion equation with time-delay, a time-delayed integro-differential equation. When the equation is crossing-monostable, the equation and the traveling waves both loss their monotonicity, and the traveling waves are oscillating as the time-delay is big. In this paper, we prove that all non-critical traveling waves (the wave speed is greater than the minimum speed), including those oscillatory waves, are time-exponentially stable, when the initial perturbations around the waves are small. The adopted approach is still the technical weighted-energy method but with a new development. Numerical simulations in different cases are also carried out, which further confirm our theoretical result. Finally, as a corollary of our stability result, we immediately obtain the uniqueness of the traveling waves for the non-monotone integro-differential equation, which was open so far as we know.
Equivalence between duality and gradient flow solutions for one-dimensional aggregation equations
François James and  Nicolas Vauchelet
2016, 36(3): 1355-1382 doi: 10.3934/dcds.2016.36.1355 +[Abstract](26) +[PDF](546.2KB)
Existence and uniqueness of global in time measure solution for a one dimensional nonlinear aggregation equation is considered. Such a system can be written as a conservation law with a velocity field computed through a self-consistent interaction potential. Blow up of regular solutions is now well established for such system. In Carrillo et al. (Duke Math J (2011)) [18], a theory of existence and uniqueness based on the geometric approach of gradient flows on Wasserstein space has been developed. We propose in this work to establish the link between this approach and duality solutions. This latter concept of solutions allows in particular to define a flow associated to the velocity field. Then an existence and uniqueness theory for duality solutions is developed in the spirit of James and Vauchelet (NoDEA (2013)) [26]. However, since duality solutions are only known in one dimension, we restrict our study to the one dimensional case.
Passive scalars, moving boundaries, and Newton's law of cooling
Juhi Jang and  Ian Tice
2016, 36(3): 1383-1413 doi: 10.3934/dcds.2016.36.1383 +[Abstract](34) +[PDF](522.5KB)
We study the evolution of passive scalars in both rigid and moving slab-like domains, in both horizontally periodic and infinite contexts. The scalar is required to satisfy Robin-type boundary conditions corresponding to Newton's law of cooling, which lead to nontrivial equilibrium configurations. We study the equilibration rate of the passive scalar in terms of the parameters in the boundary condition and the equilibration rates of the background velocity field and moving domain.
Effective boundary conditions of the heat equation on a body coated by functionally graded material
Huicong Li
2016, 36(3): 1415-1430 doi: 10.3934/dcds.2016.36.1415 +[Abstract](56) +[PDF](499.5KB)
We consider the linear heat equation on a bounded domain, which has two components with a thin coating surrounding a body (of metallic nature), subject to the Dirichlet boundary condition. The coating is composed of two layers, the pure ceramic part and the mixed part. The mixed part is considered to be functionally graded material (FGM) that is meant to make a smooth transition from being metallic to being ceramic. The diffusion tensor is isotropic on the body, and allowed to be anisotropic on the coating; and the size of diffusion tensor may differ significantly in these components. We find effective boundary conditions (EBCs) that are approximately satisfied by the solution of the heat equation on the boundary of the body. A concrete example is considered to study the effect of FGM coating. We also provide numerical simulations to verify our theoretical results.
Positive solutions of a nonlinear Schrödinger system with nonconstant potentials
Haidong Liu and  Zhaoli Liu
2016, 36(3): 1431-1464 doi: 10.3934/dcds.2016.36.1431 +[Abstract](41) +[PDF](573.5KB)
Existence of a solution of the nonlinear Schrödinger system \begin{equation*} \left\{ \begin{aligned} & - \Delta u + V_1(x) u=\mu_1(x) u^3 + \beta(x) u v^2 \qquad\mbox{in}\ \mathbb{R}^N, \\ & - \Delta v + V_2(x) v=\beta(x) u^2 v + \mu_2(x) v^3 \qquad \mbox{in}\ \mathbb{R}^N, \\ & u>0,\ v>0,\quad u,\ v\in H^1(\mathbb{R}^N), \end{aligned} \right. \end{equation*} where $N=1,2,3$, and $V_j,\mu_j,\beta$ are continuous functions of $x\in\mathbb{R}^N$, is proved provided that either $V_j,\mu_j,\beta$ are invariant under the action of a finite subgroup of $O(N)$ or there is no such invariance assumption. In either case the result is obtained both for $\beta$ small and for $\beta$ large in terms of $V_j$ and $\mu_j$.
Young towers for product systems
Stefano Luzzatto and  Marks Ruziboev
2016, 36(3): 1465-1491 doi: 10.3934/dcds.2016.36.1465 +[Abstract](40) +[PDF](828.5KB)
We show that the direct product of maps with Young towers admits a Young tower whose return times decay at a rate which is bounded above by the slowest of the rates of decay of the return times of the component maps. An application of this result, together with other results in the literature, yields various statistical properties for the direct product of various classes of systems, including Lorenz-like maps, multimodal maps, piecewise $C^2$ interval maps with critical points and singularities, Hénon maps and partially hyperbolic systems.
One smoothing property of the scattering map of the KdV on $\mathbb{R}$
Alberto Maspero and  Beat Schaad
2016, 36(3): 1493-1537 doi: 10.3934/dcds.2016.36.1493 +[Abstract](31) +[PDF](724.1KB)
In this paper we prove that in appropriate weighted Sobolev spaces, in the case of no bound states, the scattering map of the Korteweg-de Vries (KdV) on $\mathbb{R}$ is a perturbation of the Fourier transform by a regularizing operator. As an application of this result, we show that the difference of the KdV flow and the corresponding Airy flow is 1-smoothing.
On the existence of global strong solutions to the equations modeling a motion of a rigid body around a viscous fluid
Šárka Nečasová and  Joerg Wolf
2016, 36(3): 1539-1562 doi: 10.3934/dcds.2016.36.1539 +[Abstract](38) +[PDF](560.1KB)
The paper deals with the global existence of strong solution to the equations modeling a motion of a rigid body around viscous fluid. Moreover, the estimates of second gradients of velocity and pressure are given.
Global existence of solutions for the three-dimensional Boussinesq system with anisotropic data
Yuming Qin , Yang Wang , Xing Su and  Jianlin Zhang
2016, 36(3): 1563-1581 doi: 10.3934/dcds.2016.36.1563 +[Abstract](137) +[PDF](445.5KB)
In this paper, we study the three-dimensional axisymmetric Boussinesq equations with swirl. We establish the global existence of solutions for the three-dimensional axisymmetric Boussinesq equations for a family of anisotropic initial data.
Large-time behavior of the full compressible Euler-Poisson system without the temperature damping
Zhong Tan , Yong Wang and  Fanhui Xu
2016, 36(3): 1583-1601 doi: 10.3934/dcds.2016.36.1583 +[Abstract](160) +[PDF](473.5KB)
We study the three-dimensional full compressible Euler-Poisson system without the temperature damping. Using a general energy method, we prove the optimal decay rates of the solutions and their higher order derivatives. We show that the optimal decay rates is algebraic but not exponential since the absence of temperature damping.
Infinitely many solutions for an elliptic problem with double critical Hardy-Sobolev-Maz'ya terms
Chunhua Wang and  Jing Yang
2016, 36(3): 1603-1628 doi: 10.3934/dcds.2016.36.1603 +[Abstract](35) +[PDF](573.4KB)
In this paper, by an approximating argument, we obtain infinitely many solutions for the following problem \begin{equation*} \left\{ \begin{array}{ll} -\Delta u = \mu \frac{|u|^{2^{*}(t)-2}u}{|y|^{t}} + \frac{|u|^{2^{*}(s)-2}u}{|y|^{s}} + a(x) u, & \hbox{$\text{in} \Omega$}, \\ u=0,\,\, &\hbox{$\text{on}~\partial \Omega$}, \\ \end{array} \right. \end{equation*} where $\mu\geq0,2^{*}(t)=\frac{2(N-t)}{N-2},2^{*}(s) = \frac{2(N-s)}{N-2},0\leq t < s < 2,x = (y,z)\in \mathbb{R}^{k} \times \mathbb{R}^{N-k},2 \leq k < N,(0,z^*)\subset \bar{\Omega}$ and $\Omega$ is an open bounded domain in $\mathbb{R}^{N}.$ We prove that if $N > 6+t$ when $\mu>0$ and $N > 6+s$ when $\mu=0,$ $a((0,z^*)) > 0,$ $\Omega$ satisfies some geometric conditions, then the above problem has infinitely many solutions.
On the shape Conley index theory of semiflows on complete metric spaces
Jintao Wang , Desheng Li and  Jinqiao Duan
2016, 36(3): 1629-1647 doi: 10.3934/dcds.2016.36.1629 +[Abstract](45) +[PDF](1933.8KB)
In this work we develop the shape Conley index theory for local semiflows on complete metric spaces by using a weaker notion of shape index pairs. This allows us to calculate the shape index of a compact isolated invariant set $K$ by restricting the system on any closed subset that contains a local unstable manifold of $K$, and hence significantly increases the flexibility of the calculation of shape indices and Morse equations. In particular, it allows to calculate shape indices and Morse equations for an infinite dimensional system by using only the unstable manifolds of the invariant sets, without requiring the system to be two-sided on the unstable manifolds.
Lipschitz dependence of viscosity solutions of Hamilton-Jacobi equations with respect to the parameter
Kaizhi Wang and  Jun Yan
2016, 36(3): 1649-1659 doi: 10.3934/dcds.2016.36.1649 +[Abstract](160) +[PDF](420.4KB)
Let $M$ be a closed and smooth manifold and $H_\varepsilon:T^*M\to\mathbf{R}^1$ be a family of Tonelli Hamiltonians for $\varepsilon\geq0$ small. For each $\varphi\in C(M,\mathbf{R}^1)$, $T^\varepsilon_t\varphi(x)$ is the unique viscosity solution of the Cauchy problem \begin{align*} \left\{ \begin{array}{ll} d_tw+H_\varepsilon(x,d_xw)=0, & \ \mathrm{in}\ M\times(0,+\infty),\\ w|_{t=0}=\varphi, & \ \mathrm{on}\ M, \end{array} \right. \end{align*} where $T^\varepsilon_t$ is the Lax-Oleinik operator associated with $H_\varepsilon$. A result of Fathi asserts that the uniform limit, for $t\to+\infty$, of $T^\varepsilon_t\varphi+c_\varepsilon t$ exists and the limit $\bar{\varphi}_\varepsilon$ is a viscosity solution of the stationary Hamilton-Jacobi equation \begin{align*} H_\varepsilon(x,d_xu)=c_\varepsilon, \end{align*} where $c_\varepsilon$ is the unique $k$ for which the equation $H_\varepsilon(x,d_xu)=k$ admits viscosity solutions. In the present paper we discuss the continuous dependence of the viscosity solution $\bar{\varphi}_\varepsilon$ with respect to the parameter $\varepsilon$.
The regularity of sonic curves for the two-dimensional Riemann problems of the nonlinear wave system of Chaplygin gas
Qin Wang and  Kyungwoo Song
2016, 36(3): 1661-1675 doi: 10.3934/dcds.2016.36.1661 +[Abstract](30) +[PDF](474.0KB)
We study the regularity of sonic curves from a two-dimensional Riemann problem for the nonlinear wave system of Chaplygin gas, which is an essential step for the global existence of solutions to the two-dimensional Riemann problems. As a result, we establish the global existence of uniformly smooth solutions in the semi-hyperbolic patches up to the sonic boundary, where the degeneracy of hyperbolicity occurs. Furthermore, we show the $C^1$-regularity of sonic curves.
On the persistence of lower-dimensional elliptic tori with prescribed frequencies in reversible systems
Xiaocai Wang , Junxiang Xu and  Dongfeng Zhang
2016, 36(3): 1677-1692 doi: 10.3934/dcds.2016.36.1677 +[Abstract](49) +[PDF](428.1KB)
This work focuses on the persistence of lower-dimensional elliptic tori with prescribed frequencies in reversible systems. By KAM method and the special structure of unperturbed nonlinear terms, we prove that the invariant torus with given frequency persists under small perturbations. Our result is a generalization of [22].
Structurally stable homoclinic classes
Xiao Wen
2016, 36(3): 1693-1707 doi: 10.3934/dcds.2016.36.1693 +[Abstract](41) +[PDF](377.2KB)
In this paper we study structurally stable homoclinic classes. In a natural way, the structural stability for an individual homoclinic class is defined through the continuation of periodic points. Since the classes is not innately locally maximal, it is hard to answer whether structurally stable homoclinic classes are hyperbolic. In this article, we make some progress on this question. We prove that if a homoclinic class is structurally stable, then it admits a dominated splitting. Moreover we prove that codimension one structurally stable classes are hyperbolic. Also, if the diffeomorphism is far away from homoclinic tangencies, then structurally stable homoclinic classes are hyperbolic.
Global solutions of two coupled Maxwell systems in the temporal gauge
Jianjun Yuan
2016, 36(3): 1709-1719 doi: 10.3934/dcds.2016.36.1709 +[Abstract](32) +[PDF](370.9KB)
In this paper, we consider the Maxwell-Klein-Gordon and Maxwell-Chern-Simons-Higgs systems in the temporal gauge. By using the fact that when the spatial gauge potentials are in the Coulomb gauge, their $\dot{H}^1$ norms can be controlled by the energy of the corresponding system and their $L^2$ norms, and the gauge invariance of the systems, we show that finite energy solutions of these two systems exist globally in this gauge.
A Liouville theorem for $\alpha$-harmonic functions in $\mathbb{R}^n_+$
Lizhi Zhang , Congming Li , Wenxiong Chen and  Tingzhi Cheng
2016, 36(3): 1721-1736 doi: 10.3934/dcds.2016.36.1721 +[Abstract](40) +[PDF](396.7KB)
In this paper, we consider $\alpha$-harmonic functions in the half space $\mathbb{R}^n_+$: \begin{equation} \left\{\begin{array}{ll} (-\triangle)^{\alpha/2} u(x)=0,~u(x)\geq0, & \qquad x\in\mathbb{R}^n_+, \\ u(x)\equiv0, & \qquad x\notin\mathbb{R}^{n}_{+}. \end{array}\right.                      (1) \end{equation} We prove that all solutions of (1) are either identically zero or assuming the form \begin{equation} u(x)=\left\{\begin{array}{ll}Cx_n^{\alpha/2}, & \qquad x\in\mathbb{R}^n_+, \\ 0, & \qquad x\notin\mathbb{R}^{n}_{+}, \end{array}\right. \label{2} \end{equation} for some positive constant $C$.
On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion
Pan Zheng , Chunlai Mu and  Xiaojun Song
2016, 36(3): 1737-1757 doi: 10.3934/dcds.2016.36.1737 +[Abstract](39) +[PDF](485.8KB)
This paper deals with a parabolic-parabolic-ODE chemotaxis haptotaxis system with nonlinear diffusion \begin{eqnarray*}\label{1a} \left\{ \begin{split}{} &u_{t}=\nabla\cdot(\varphi(u)\nabla u)-\chi\nabla\cdot(u\nabla v)-\xi\nabla\cdot(u\nabla w)+\mu u(1-u-w), \\ &v_{t}=\Delta v-v+u, \\ &w_{t}=-vw, \end{split} \right. \end{eqnarray*} under Neumann boundary conditions in a smooth bounded domain $\Omega\subset \mathbb{R}^{2}$, where $\chi$, $\xi$ and $\mu$ are positive parameters and $\varphi(u)$ is a nonlinear diffusion function. Firstly, under the case of non-degenerate diffusion, it is proved that the corresponding initial boundary value problem possesses a unique global classical solution that is uniformly bounded in $\Omega\times(0,\infty)$. Moreover, under the case of degenerate diffusion, we prove that the corresponding problem admits at least one nonnegative global bounded-in-time weak solution. Finally, under some additional conditions, we derive the temporal decay estimate of $w$.

2016  Impact Factor: 1.099




Email Alert

[Back to Top]