ISSN:

1078-0947

eISSN:

1553-5231

All Issues

## Discrete & Continuous Dynamical Systems - A

2011 , Volume 31 , Issue 3

Select all articles

Export/Reference:

2011, 31(3): 607-649
doi: 10.3934/dcds.2011.31.607

*+*[Abstract](334)*+*[PDF](658.1KB)**Abstract:**

We consider the cubic Szegö equation

$i\partial$_{$t$}$u=$$\Pi$$(|u|^{2}u)$

2011, 31(3): 651-668
doi: 10.3934/dcds.2011.31.651

*+*[Abstract](320)*+*[PDF](409.2KB)**Abstract:**

Let $f$ be a homeomorphism of the closed annulus $A$ that preserves the orientation, the boundary components and that has a lift $\tilde f$ to the infinite strip $\tilde A$ which is transitive. We show that, if the rotation number of $\tilde f$ restricted to both boundary components of $A$ is strictly positive, then there exists a closed nonempty connected set $\Gamma\subset\tilde A$ such that $\Gamma\subset]-\infty,0]\times[0,1]$, $\Gamma$ is unbounded, the projection of $\Gamma$ to $A$ is dense, $\Gamma-(1,0)\subset\Gamma$ and $\tilde{f}(\Gamma)\subset \Gamma.$ Also, if $p_1$ is the projection on the first coordinate of $\tilde A$, then there exists $d>0$ such that, for any $\tilde z\in\Gamma,$ $$\limsup_{n\to\infty}\frac{p_1(\tilde f^n(\tilde z))-p_1(\tilde z)}{n}<-d.$$

2011, 31(3): 669-684
doi: 10.3934/dcds.2011.31.669

*+*[Abstract](266)*+*[PDF](443.7KB)**Abstract:**

In this paper, we study the escape rate of infinite lattices of weakly coupled maps with uniformly expanding repeller. In particular, it is proved that the escape rate of spatially periodic approximations is extensive and grows linearly with the period size. The proof relies on symbolic dynamics and is based on the control of cumulative effects of perturbations in cylinder sets with distinct spatial periods. A piecewise affine diffusive example is presented that exhibits monotonic decay of the escape rate with coupling intensity.

2011, 31(3): 685-707
doi: 10.3934/dcds.2011.31.685

*+*[Abstract](563)*+*[PDF](415.4KB)**Abstract:**

For finitely generated groups, amenability and Følner properties are equivalent. However, contrary to a widespread idea, Kaimanovich showed that Følner condition does not imply amenability for discrete measured equivalence relations. In this paper, we exhibit two examples of $C^\infty$ foliations of closed manifolds that are Følner and non amenable with respect to a finite transverse invariant measure and a transverse invariant volume, respectively. We also prove the equivalence between the two notions when the foliation is minimal, that is all the leaves are dense, giving a positive answer to a question of Kaimanovich. The equivalence is stated with respect to transverse invariant measures or some tangentially smooth measures. The latter include harmonic measures, and in this case the Følner condition has to be replaced by $\eta$-Følner (where the usual volume is modified by the modular form $\eta$ of the measure).

2011, 31(3): 709-735
doi: 10.3934/dcds.2011.31.709

*+*[Abstract](335)*+*[PDF](483.4KB)**Abstract:**

In the current article we study complex cycles of higher multiplicity in a specific polynomial family of holomorphic foliations in the complex plane. The family in question is a perturbation of an exact polynomial one-form giving rise to a foliation by Riemann surfaces. In this setting, a complex cycle is defined as a nontrivial element of the fundamental group of a leaf from the foliation. In addition to that, we introduce the notion of a multi-fold cycle and show that in our example there exists a limit cycle of any multiplicity. Furthermore, such a cycle gives rise to a one-parameter family of cycles continuously depending on the perturbation parameter. As the parameter decreases in absolute value, the cycles from the continuous family escape from a very large subdomain of the complex plane.

2011, 31(3): 737-752
doi: 10.3934/dcds.2011.31.737

*+*[Abstract](461)*+*[PDF](5208.8KB)**Abstract:**

We study focusing discrete nonlinear Schrödinger equations and present a novel variational existence proof for homoclinic standing waves (bright solitons). Our approach relies on the constrained maximization of an energy functional and provides the existence of two one-parameter families of waves with unimodal and even profile function for a wide class of nonlinearities. Finally, we illustrate our results by numerical simulations.

2011, 31(3): 753-762
doi: 10.3934/dcds.2011.31.753

*+*[Abstract](341)*+*[PDF](370.6KB)**Abstract:**

We study a special conjugacy class $\mathcal F$ of continuous piecewise monotone interval maps: with countably many laps, which are locally eventually onto and have common topological entropy $\log9$. We show that $\mathcal F$ contains a piecewise affine map $f_{\lambda}$ with a constant slope $\lambda$ if and only if $\lambda\ge 9$. Our result specifies the known fact that for piecewise affine interval leo maps with countably many pieces of monotonicity and a constant slope $\pm\lambda$, the topological (measure-theoretical) entropy is not determined by $\lambda$. We also consider maps from the class $\mathcal F$ preserving the Lebesgue measure. We show that some of them have a knot point (a point $x$ where Dini's derivatives satisfy $D^{+}f(x)=D^{-}f(x)= \infty$ and $D_{+}f(x)=D_{-}f(x)= -\infty$) in its fixed point $1/2$.

2011, 31(3): 763-777
doi: 10.3934/dcds.2011.31.763

*+*[Abstract](310)*+*[PDF](384.2KB)**Abstract:**

The results in this paper fit into a program to study the existence of periodic orbits, invariant cylinders and tori filled with periodic orbits in perturbed reversible systems. Here we focus on bifurcations of one-parameter families of periodic orbits for reversible vector fields in $\mathbb{R}^4$. The main used tools are normal forms theory, Lyapunov-Schmidt method and averaging theory.

2011, 31(3): 779-796
doi: 10.3934/dcds.2011.31.779

*+*[Abstract](330)*+*[PDF](422.8KB)**Abstract:**

We establish the existence of pullback attractors for the dynamical system associated to a globally modified model of the Navier-Stokes equations containing delay operators with infinite delay in a suitable weighted space. Actually, we are able to prove the existence of attractors in different classes of universes, one is the classical of fixed bounded sets, and the other is given by a tempered condition. Relationship between these two kind of objects is also analyzed.

2011, 31(3): 797-825
doi: 10.3934/dcds.2011.31.797

*+*[Abstract](374)*+*[PDF](567.6KB)**Abstract:**

In this article we apply (recently extended by Kato and Akin) an elegant method of Iwanik (which adopts independence relations of Kuratowski and Mycielski) in the construction of various chaotic sets. We provide ''easy to track'' proofs of some known facts and establish new results as well. The main advantage of the presented approach is that it is easy to verify each step of the proof, when previously it was almost impossible to go into all the details of the construction (usually performed as an inductive procedure). Furthermore, we are able extend known results on chaotic sets in an elegant way. Scrambled, distributionally scrambled and chaotic sets with relation to various notions of mixing are considered.

2011, 31(3): 827-846
doi: 10.3934/dcds.2011.31.827

*+*[Abstract](335)*+*[PDF](459.4KB)**Abstract:**

This paper presents a first rigorous study of the so-called large-scale semigeostrophic equations which were first introduced by R. Salmon in 1985 and later generalized by the first author. We show that these models are Hamiltonian on the group of $H^s$ diffeomorphisms for $s>2$. Notably, in the Hamiltonian setting an apparent topological restriction on the Coriolis parameter disappears. We then derive the corresponding Hamiltonian formulation in Eulerian variables via Poisson reduction and give a simple argument for the existence of $H^s$ solutions locally in time.

2011, 31(3): 847-875
doi: 10.3934/dcds.2011.31.847

*+*[Abstract](402)*+*[PDF](690.0KB)**Abstract:**

We consider the behavior of a modulated wave solution to an $\mathbb{S}^1$-equivariant autonomous system of differential equations under an external forcing of modulated wave type. The modulation frequency of the forcing is assumed to be close to the modulation frequency of the modulated wave solution, while the wave frequency of the forcing is supposed to be far from that of the modulated wave solution. We describe the domain in the three-dimensional control parameter space (of frequencies and amplitude of the forcing) where stable locking of the modulation frequencies of the forcing and the modulated wave solution occurs.

Our system is a simplest case scenario for the behavior of self-pulsating lasers under the influence of external periodically modulated optical signals.

2011, 31(3): 877-911
doi: 10.3934/dcds.2011.31.877

*+*[Abstract](394)*+*[PDF](600.1KB)**Abstract:**

For one-parameter families of piecewise expanding maps of the interval we establish sufficient conditions such that a given point in the interval is typical for the absolutely continuous invariant measure for a full Lebesgue measure set of parameters. In particular, we consider $C^{1,1}(L)$-versions of $\beta$-transformations, piecewise expanding unimodal maps, and Markov structure preserving one-parameter families. For families of piecewise expanding unimodal maps we show that the turning point is almost surely typical whenever the family is transversal.

2011, 31(3): 913-940
doi: 10.3934/dcds.2011.31.913

*+*[Abstract](268)*+*[PDF](535.7KB)**Abstract:**

We study the dynamics of homoclinic classes on three dimensional manifolds under the robust absence of dominated splittings. We prove that, $C^1$-generically, if such a homoclinic class contains a volume-expanding periodic point, then it contains a hyperbolic periodic point whose index (dimension of the unstable manifold) is equal to two.

2011, 31(3): 941-973
doi: 10.3934/dcds.2011.31.941

*+*[Abstract](416)*+*[PDF](1085.3KB)**Abstract:**

This paper continues our work on local bifurcations for nonautonomous difference and ordinary differential equations. Here, it is our premise that constant or periodic solutions are replaced by bounded entire solutions as bifurcating objects in order to encounter right-hand sides with an arbitrary time dependence.

We introduce a bifurcation pattern caused by a dominant spectral interval (of the dichotomy spectrum) crossing the stability boundary. As a result, differing from the classical autonomous (or periodic) situation, the change of stability appears in two steps from uniformly asymptotically stable to asymptotically stable and finally to unstable. During the asymptotically stable regime, a whole family of bounded entire solutions occurs (a so-called "shovel"). Our basic tools are exponential trichotomies and a quantitative version of the surjective implicit function theorem yielding the existence of strongly center manifolds.

2011, 31(3): 975-983
doi: 10.3934/dcds.2011.31.975

*+*[Abstract](430)*+*[PDF](321.0KB)**Abstract:**

We establish a Harnack inequality of fractional Laplace equations without imposing sign condition on the coefficient of zero order term via the Moser's iteration and John-Nirenberg inequality.

2011, 31(3): 985-996
doi: 10.3934/dcds.2011.31.985

*+*[Abstract](291)*+*[PDF](355.2KB)**Abstract:**

We consider the dynamics of nondegenerate polynomial skew products on $\mathbb{C}^{2}$. The paper includes investigations of the existence of the Green and fiberwise Green functions of the maps, which induce generalized Green functions that are well-behaved on $\mathbb{C}^{2}$, and examples of the Green functions which are not defined on some curves in $\mathbb{C}^{2}$. Moreover, we consider the dynamics of the extensions of the maps to holomorphic or rational maps on weighted projective spaces.

2011, 31(3): 997-1015
doi: 10.3934/dcds.2011.31.997

*+*[Abstract](317)*+*[PDF](459.2KB)**Abstract:**

In this paper, we show that there are many almost periodic solutions corresponding to full dimensional invariant tori for the semilinear quantum harmonic oscillators with Hermite multiplier $${\rm i}{u}_{t}-u_{xx}+x^2u + M_\xi u+\varepsilon |u|^{2m}u=0,\quad u\in C^1(\Bbb R,L^2(\Bbb R)),$$ where $m \geq 1$ is an integer. The proof is based on an abstract infinite dimensional KAM theorem.

2017 Impact Factor: 1.179

## Readers

## Authors

## Editors

## Referees

## Librarians

## More

## Email Alert

Add your name and e-mail address to receive news of forthcoming issues of this journal:

[Back to Top]